参数资料
型号: ISL6323AIRZ-T
厂商: Intersil
文件页数: 32/36页
文件大小: 0K
描述: IC PWM CTRLR SYNC BUCK DL 48QFN
标准包装: 4,000
应用: 控制器,AMD SVI
输入电压: 5 V ~ 12 V
输出数: 2
输出电压: 最高 2V
工作温度: -40°C ~ 85°C
安装类型: 表面贴装
封装/外壳: 48-VFQFN 裸露焊盘
供应商设备封装: 48-QFN(7x7)
包装: 带卷 (TR)
ISL6323A
– N ? V OUT ? ? V OUT
? V
L ≥ ESR ? --------------------------------------------------------------------
Output Filter Design
The output inductors and the output capacitor bank together
to form a low-pass filter responsible for smoothing the
.
? IN ?
f S ? V IN ? V P-P ( MAX )
(EQ. 55)
pulsating voltage at the phase nodes. The output filter also
must provide the transient energy until the regulator can
respond. Because it has a low bandwidth compared to the
switching frequency, the output filter limits the system
transient response. The output capacitors must supply or
sink load current while the current in the output inductors
increases or decreases to meet the demand.
In high-speed converters, the output capacitor bank is usually
the most costly (and often the largest) part of the circuit.
Output filter design begins with minimizing the cost of this part
of the circuit. The critical load parameters in choosing the
output capacitors are the maximum size of the load step, Δ I,
the load-current slew rate, di/dt, and the maximum allowable
output-voltage deviation under transient loading, Δ V MAX .
Capacitors are characterized according to their capacitance,
ESR, and ESL (equivalent series inductance).
Since the capacitors are supplying a decreasing portion of
the load current while the regulator recovers from the
transient, the capacitor voltage becomes slightly depleted.
The output inductors must be capable of assuming the entire
load current before the output voltage decreases more than
Δ V MAX . This places an upper limit on inductance.
Equation 56 gives the upper limit on L for the cases when
the trailing edge of the current transient causes a greater
output-voltage deviation than the leading edge. Equation 57
addresses the leading edge. Normally, the trailing edge
dictates the selection of L because duty cycles are usually
less than 50%. Nevertheless, both inequalities should be
evaluated, and L should be selected based on the lower of
the two results. In each equation, L is the per-channel
inductance, C is the total output capacitance, and N is the
number of active channels.
L ≤ --------------------------------- ? Δ V MAX – ( Δ I ? ESR )
L ≤ ----------------------------- ? Δ V MAX – ( Δ I ? ESR ) ? ? V IN – V O ?
( Δ I ) 2
At the beginning of the load transient, the output capacitors
supply all of the transient current. The output voltage will
initially deviate by an amount approximated by the voltage
drop across the ESL. As the load current increases, the
voltage drop across the ESR increases linearly until the load
current reaches its final value. The capacitors selected must
2 ? N ? C ? V O
( Δ I ) 2
1.25 ? N ? C
? ?
(EQ. 56)
(EQ. 57)
have sufficiently low ESL and ESR so that the total
output-voltage deviation is less than the allowable maximum.
Neglecting the contribution of inductor current and regulator
response, the output voltage initially deviates by an amount
as shown in Equation 54:
Switching Frequency
There are a number of variables to consider when choosing
the switching frequency, as there are considerable effects on
the upper MOSFET loss calculation. These effects are
outlined in “MOSFETs” on page 26, and they establish the
upper limit for the switching frequency. The lower limit is
Δ V ≈ ESL ? ----- + ESR ? Δ I
di
dt
(EQ. 54)
established by the requirement for fast transient response
and small output-voltage ripple as outlined in “Output Filter
The filter capacitor must have sufficiently low ESL and ESR
so that Δ V < Δ V MAX .
Most capacitor solutions rely on a mixture of high frequency
capacitors with relatively low capacitance in combination
with bulk capacitors having high capacitance but limited
high-frequency performance. Minimizing the ESL of the
high-frequency capacitors allows them to support the output
voltage as the current increases. Minimizing the ESR of the
bulk capacitors allows them to supply the increased current
with less output voltage deviation.
The ESR of the bulk capacitors also creates the majority of
the output-voltage ripple. As the bulk capacitors sink and
source the inductor AC ripple current (see “Interleaving” on
page 12 and Equation 3), a voltage develops across the bulk
capacitor ESR equal to I C(P-P) (ESR). Thus, once the output
capacitors are selected, the maximum allowable ripple
voltage, V P-P(MAX) , determines the lower limit on the
inductance.
32
Design” on page 32. Choose the lowest switching frequency
that allows the regulator to meet the transient-response
requirements.
Switching frequency is determined by the selection of the
frequency-setting resistor, R T . Figure 24 and Equation 58
are provided to assist in selecting the correct value for R T .
[ 10.61 – ( 1.035 ? log ( f S ) ) ] (EQ. 58)
R T = 10
FN6878.1
May 12, 2010
相关PDF资料
PDF描述
ACM25DSXN CONN EDGECARD 50POS DIP .156 SLD
EMA32DTKN CONN EDGECARD 64POS DIP .125 SLD
ABM25DSXN CONN EDGECARD 50POS DIP .156 SLD
HSC26DRTS-S13 CONN EDGECARD 52POS .100 EXTEND
ESA32DTKH CONN EDGECARD 64POS DIP .125 SLD
相关代理商/技术参数
参数描述
AT89C5130A-RDRUM 功能描述:8位微控制器 -MCU 8-bit 16K Flash C5130A USB RoHS:否 制造商:Silicon Labs 核心:8051 处理器系列:C8051F39x 数据总线宽度:8 bit 最大时钟频率:50 MHz 程序存储器大小:16 KB 数据 RAM 大小:1 KB 片上 ADC:Yes 工作电源电压:1.8 V to 3.6 V 工作温度范围:- 40 C to + 105 C 封装 / 箱体:QFN-20 安装风格:SMD/SMT
AT89C5130A-RDTIM 功能描述:IC 8051 MCU FLASH 16K USB 64VQFP RoHS:否 类别:集成电路 (IC) >> 嵌入式 - 微控制器, 系列:AT89C513x 标准包装:1,500 系列:AVR® ATtiny 核心处理器:AVR 芯体尺寸:8-位 速度:16MHz 连通性:I²C,LIN,SPI,UART/USART,USI 外围设备:欠压检测/复位,POR,PWM,温度传感器,WDT 输入/输出数:16 程序存储器容量:8KB(4K x 16) 程序存储器类型:闪存 EEPROM 大小:512 x 8 RAM 容量:512 x 8 电压 - 电源 (Vcc/Vdd):2.7 V ~ 5.5 V 数据转换器:A/D 11x10b 振荡器型:内部 工作温度:-40°C ~ 125°C 封装/外壳:20-SOIC(0.295",7.50mm 宽) 包装:带卷 (TR)
AT89C5130A-RDTUM 功能描述:8位微控制器 -MCU C5130A 16K Flash USB 5V RoHS:否 制造商:Silicon Labs 核心:8051 处理器系列:C8051F39x 数据总线宽度:8 bit 最大时钟频率:50 MHz 程序存储器大小:16 KB 数据 RAM 大小:1 KB 片上 ADC:Yes 工作电源电压:1.8 V to 3.6 V 工作温度范围:- 40 C to + 105 C 封装 / 箱体:QFN-20 安装风格:SMD/SMT
AT89C5130A-S3SIM 制造商:ATMEL 制造商全称:ATMEL Corporation 功能描述:8-bit Flash Microcontroller with Full Speed USB Device
AT89C5130A-S3SUM 功能描述:8位微控制器 -MCU C5130A 16K Flash USB 5V RoHS:否 制造商:Silicon Labs 核心:8051 处理器系列:C8051F39x 数据总线宽度:8 bit 最大时钟频率:50 MHz 程序存储器大小:16 KB 数据 RAM 大小:1 KB 片上 ADC:Yes 工作电源电压:1.8 V to 3.6 V 工作温度范围:- 40 C to + 105 C 封装 / 箱体:QFN-20 安装风格:SMD/SMT