参数资料
型号: MAX1758EAI+
厂商: Maxim Integrated Products
文件页数: 15/17页
文件大小: 0K
描述: IC BATT CHRG 4-LI+ 28V SW 28SSOP
产品培训模块: Lead (SnPb) Finish for COTS
Obsolescence Mitigation Program
标准包装: 46
功能: 充电管理
电池化学: 锂离子(Li-Ion)
电源电压: 6 V ~ 28 V
工作温度: -40°C ~ 85°C
安装类型: 表面贴装
封装/外壳: 28-SSOP(0.209",5.30mm 宽)
供应商设备封装: 28-SSOP
包装: 管件
产品目录页面: 1410 (CN2011-ZH PDF)
MAX1758
Stand-Alone, Switch-Mode
Li+ Battery Charger with Internal 28V Switch
cell voltage limit battery regulation voltage is deter-
mined, the VADJ voltage is calculated by the equation:
DC charging current (LIR) can be used to calculate the
optimal inductor value:
V BATT ( DCIN ( MAX ) ? V BATT )
V VADJ = (9.5 V BATTR / N) - (9.0 x V REF )
CELL is the programming input for selecting cell count
N. Table 2 shows how CELL is connected to charge 1,
L =
V
V DCIN ( MAX ) x f OSC x I CHG x LIR
2, 3, or 4 cells.
Setting the Charging Current Limit
where f OSC is the switching frequency (300kHz).
The peak inductor current is given by:
I PEAK ISETOUT ? 1 +
= I
?
A resistor-divider from REF to GND sets the voltage at
ISETOUT (V ISETOUT ). This determines the charging cur-
rent during the current-regulation (fast-charge) mode.
The full-scale charging current is 1.5A.
?
?
LIR ?
2 ?
I CHG = 1 . 5 A ?
? V ISETOUT ?
?
?
?
The charging current (I CHG ) is, therefore:
V REF
Connect ISETOUT to REF to get the full-scale current
limit.
Setting the Input Current limit
A resistor-divider from REF to GND sets the voltage at
ISETIN (V ISETIN ). This sets the maximum source current
Capacitor Selection
The input capacitor shunts the switching current from
the charger input and prevents that current from circu-
lating through the source, typically an AC wall cube.
Thus, the input capacitor must be able to handle the
input RMS current. Typically, at high charging currents,
the converter will operate in continuous conduction (the
inductor current does not go to 0). In this case, the
RMS current of the input capacitor may be approximat-
ed by the equation:
allowed at any time during charging. The source cur-
rent I FSS is set by the current-sense resistor R SOURCE
between CSSP and CSSN. The full-scale source current
I CIN ? I CHG
D ? D 2
I IN FSS ? ISETIN ?
= I
is I FSS = 0.1V / R1 (Figure 1).
The input current limit (I IN ) is therefore:
? V ?
? V REF ?
Connect ISETIN to REF to get the full-scale input cur-
rent limit. Short CSSP and CSSN if the input source cur-
rent limit is not used.
In choosing the current-sense resistor, note that the drop
across this resistor adds to the power loss and thus
reduces efficiency. However, too low a resistor value
may degrade input current-limit accuracy.
Inductor Selection
The inductor value may be changed for more or less
ripple current. The higher the inductance, the lower the
ripple current will be; however, as the physical size is
kept the same, typically, higher inductance will result in
higher series resistance and lower saturation current. A
good tradeoff is to choose the inductor so that the rip-
ple current is approximately 30% to 50% of the DC
average charging current. The ratio of ripple current to
Maxim Integrated
where:
I CIN is the input capacitor RMS current.
D is the PWM converter duty ratio (typically V BATT /
V DCIN ).
I CHG is the battery charging current.
The maximum RMS input current occurs at 50% duty
cycle; thus, the worst-case input ripple current is 0.5 x
I CHG . If the input-to-output voltage ratio is such that the
PWM controller will never work at 50% duty cycle, then
the worst-case capacitor current will occur where the
duty cycle is nearest 50%.
The input capacitor impedance is critical to preventing
AC currents from flowing back into the wall cube. This
requirement varies depending on the wall cube imped-
ance and the requirements of any conducted or radiat-
ed EMI specifications that must be met. Aluminum
electrolytic capacitors are generally the cheapest, but
usually are a poor choice for portable devices due to
their large size and poor equivalent series resistance
(ESR). Tantalum capacitors are better in most cases, as
are high-value ceramic capacitors. For equivalent size
and voltage rating, tantalum capacitors will have higher
capacitance, but also higher ESR than ceramic capaci-
tors. This makes consideration of RMS current and power
15
相关PDF资料
PDF描述
4590R-564K INDUCTOR HIGH CURRENT 560.0UH
EET-ED2W331EA CAP ALUM 330UF 450V 20% SNAP
RP12-2405SA CONV DC/DC 12W 18-36VIN 05VOUT
4590-564K INDUCTOR HIGH CURRENT 560.0UH
RP12-2412SA CONV DC/DC 12W 18-36VIN 12VOUT
相关代理商/技术参数
参数描述
MAX1758EAI+ 功能描述:电池管理 Li+ Battery Charger w/28V Switch RoHS:否 制造商:Texas Instruments 电池类型:Li-Ion 输出电压:5 V 输出电流:4.5 A 工作电源电压:3.9 V to 17 V 最大工作温度:+ 85 C 最小工作温度:- 40 C 封装 / 箱体:VQFN-24 封装:Reel
MAX1758EAI+T 功能描述:电池管理 Li+ Battery Charger w/28V Switch RoHS:否 制造商:Texas Instruments 电池类型:Li-Ion 输出电压:5 V 输出电流:4.5 A 工作电源电压:3.9 V to 17 V 最大工作温度:+ 85 C 最小工作温度:- 40 C 封装 / 箱体:VQFN-24 封装:Reel
MAX1758EAI-T 功能描述:电池管理 Li+ Battery Charger w/28V Switch RoHS:否 制造商:Texas Instruments 电池类型:Li-Ion 输出电压:5 V 输出电流:4.5 A 工作电源电压:3.9 V to 17 V 最大工作温度:+ 85 C 最小工作温度:- 40 C 封装 / 箱体:VQFN-24 封装:Reel
MAX1758EVKIT 功能描述:电池管理 Evaluation Kit for the MAX1757 MAX1758 RoHS:否 制造商:Texas Instruments 电池类型:Li-Ion 输出电压:5 V 输出电流:4.5 A 工作电源电压:3.9 V to 17 V 最大工作温度:+ 85 C 最小工作温度:- 40 C 封装 / 箱体:VQFN-24 封装:Reel
MAX17595ATE+ 功能描述:电流型 PWM 控制器 AC/DC-DC/DC Peak Current-Mode Cnvrtr RoHS:否 制造商:Texas Instruments 开关频率:27 KHz 上升时间: 下降时间: 工作电源电压:6 V to 15 V 工作电源电流:1.5 mA 输出端数量:1 最大工作温度:+ 105 C 安装风格:SMD/SMT 封装 / 箱体:TSSOP-14