参数资料
型号: ISL6336ACRZ
厂商: Intersil
文件页数: 28/31页
文件大小: 0K
描述: IC CTRLR PWM 6PHASE BUCK 48-QFN
标准包装: 43
应用: 控制器,Intel VR11.1
输入电压: 3 V ~ 12 V
输出数: 1
输出电压: 0.5 V ~ 1.6 V
工作温度: 0°C ~ 70°C
安装类型: 表面贴装
封装/外壳: 48-VFQFN 裸露焊盘
供应商设备封装: 48-QFN(7x7)
包装: 管件
ISL6336, ISL6336A
R 1 = R FB -----------------------------------------
C 1 = -----------------------------------------
Δ V ≈ ( ESL ) ? ----- + ( ESR ) ? Δ I
(EQ. 39)
C ( ESR )
LC – C ( ESR )
LC – C ( ESR )
R FB
response, the output voltage initially deviates by an amount,
as shown in Equation 39:
di
dt
The filter capacitor must have sufficiently low ESL and ESR
( 2 π ) 2 f 0 f HF LCR FB V P-P
V PP ? 2 π ? f 0 f HF LCR FB
R C = ---------------------------------------------------------------------
? 2 π f
HF LC – 1 ?
?
0.75 V
0.75V IN
C 2 = --------------------------------------------------------------------
2
? ?
?
IN
(EQ. 38)
so that Δ V < Δ V MAX .
Most capacitor solutions rely on a mixture of high-frequency
capacitors with relatively low capacitance in combination
with bulk capacitors having high capacitance but limited
high-frequency performance. Minimizing the ESL of the
high-frequency capacitors allows them to support the output
voltage as the current increases. Minimizing the ESR of the
bulk capacitors allows them to supply the increased current
0.75V IN ? 2 π f
( 2 π ) 2 f 0 f HF LCR FB V P-P
?
? HF LC – 1 ?
C C = --------------------------------------------------------------------
In Equation 38, L is the per-channel filter inductance divided
by the number of active channels; C is the sum total of all
output capacitors; ESR is the equivalent-series resistance of
the bulk output-filter capacitance; and V PP is the peak-
to-peak sawtooth signal amplitude as described in the
“Electrical Specifications” table beginning on page 7.
with less output voltage deviation.
The ESR of the bulk capacitors also creates the majority of
the output-voltage ripple. As the bulk capacitors sink and
source the inductor ac ripple current (see “Interleaving” on
page 11 and Equation 2), a voltage develops across the
bulk-capacitor ESR equal to I C,PP (ESR). Thus, once the
output capacitors are selected, the maximum allowable
ripple voltage, V PP(MAX) , determines the lower limit on the
inductance, as shown in Equation 40.
IN – N ? V OUT ? V OUT
? V ?
L ≥ ( ESR ) ? --------------------------------------------------------------------
Output Filter Design
The output inductors and the output capacitor bank together
form a low-pass filter responsible for smoothing the pulsating
? ?
f S ? V IN ? V P-P ( MAX )
(EQ. 40)
voltage at the phase nodes. The output filter also must
provide the transient energy until the regulator can respond.
Because it has a low bandwidth compared to the switching
frequency, the output filter necessarily limits the system
transient response. The output capacitor must supply or sink
load current while the current in the output inductors
increases or decreases to meet the demand.
In high-speed converters, the output capacitor bank is
usually the most costly (and often the largest) part of the
circuit. Output filter design begins with minimizing the cost of
this part of the circuit. The critical load parameters in
choosing the output capacitors are the maximum size of the
load step, Δ I; the load-current slew rate, di/dt; and the
maximum allowable output-voltage deviation under transient
loading, Δ V MAX . Capacitors are characterized according to
Since the capacitors are supplying a decreasing portion of
the load current while the regulator recovers from the
transient, the capacitor voltage becomes slightly depleted.
The output inductors must be capable of assuming the entire
load current before the output voltage decreases more than
Δ V MAX . This places an upper limit on inductance.
Equation 41 gives the upper limit on L for the cases when the
trailing edge of the current transient causes a greater output-
voltage deviation than the leading edge. Equation 42
addresses the leading edge. Normally, the trailing edge dictates
the selection of L because duty cycles are usually much less
than 50%. Nevertheless, both inequalities should be evaluated,
and L should be selected based on the lower of the two results.
In each equation, L is the per-channel inductance, C is the total
output capacitance, and N is the number of active channels.
L ≤ --------------------------------- Δ V MAX – ( Δ I ? ( ESR ) )
L ≤ ----------------------------- Δ V MAX – ( Δ I ? ( ESR ) ) ? ? V IN – V O ?
( Δ I ) 2
their capacitance, ESR, and ESL (equivalent series
inductance).
At the beginning of the load transient, the output capacitors
supply all of the transient current. The output voltage will
initially deviate by an amount approximated by the voltage
2 ? N ? C ? V O
( Δ I ) 2
1.25 ? N ? C
? ?
(EQ. 41)
(EQ. 42)
drop across the ESL. As the load current increases, the
voltage drop across the ESR increases linearly until the load
current reaches its final value. The capacitors selected must
have sufficiently low ESL and ESR so that the total output
voltage deviation is less than the allowable maximum.
Neglecting the contribution of inductor current and regulator
28
Switching Frequency
There are a number of variables to consider when choosing
the switching frequency, as there are considerable effects on
the upper-MOSFET loss calculation. These effects are
outlined in “MOSFETs” on page 25, and they establish the
upper limit for the switching frequency. The lower limit is
established by the requirement for fast transient response
FN6504.1
May 28, 2009
相关PDF资料
PDF描述
RSA24DRMH CONN EDGECARD 48POS .125 SQ WW
2512-182K POWER INDUCTOR 1.8UH SMD
X40021S14-BT1 IC VOLTAGE MONITOR DUAL 14-SOIC
HSC08DTES CONN EDGECARD 16POS .100 EYELET
ISL6265CHRTZ-T IC CTRLR MULTI-OUTPUT 48TQFN
相关代理商/技术参数
参数描述
P89LPC9351FDH 制造商:PHILIPS 制造商全称:NXP Semiconductors 功能描述:8-bit microcontroller with accelerated two-clock 80C51 core 8 kB 3 V byte-erasable flash with 8-bit ADC
P89LPC9351FDH,518 功能描述:8位微控制器 -MCU Enhanced LPC935 RoHS:否 制造商:Silicon Labs 核心:8051 处理器系列:C8051F39x 数据总线宽度:8 bit 最大时钟频率:50 MHz 程序存储器大小:16 KB 数据 RAM 大小:1 KB 片上 ADC:Yes 工作电源电压:1.8 V to 3.6 V 工作温度范围:- 40 C to + 105 C 封装 / 箱体:QFN-20 安装风格:SMD/SMT
P89LPC935FA 制造商:NXP Semiconductors 功能描述:IC MCU 8BIT 80C51 8K FLASH PLCC28
P89LPC935FA,129 功能描述:8位微控制器 -MCU 80C51 8K FL 768B RAM RoHS:否 制造商:Silicon Labs 核心:8051 处理器系列:C8051F39x 数据总线宽度:8 bit 最大时钟频率:50 MHz 程序存储器大小:16 KB 数据 RAM 大小:1 KB 片上 ADC:Yes 工作电源电压:1.8 V to 3.6 V 工作温度范围:- 40 C to + 105 C 封装 / 箱体:QFN-20 安装风格:SMD/SMT
P89LPC935FA129 制造商:NXP Semiconductors 功能描述:IC 8BIT MCU 80C51 18MHZ LCC-28