参数资料
型号: 5962-8870101ZX
厂商: MS KENNEDY CORP
元件分类: 运算放大器
英文描述: OP-AMP, 1500 uV OFFSET-MAX, SFM6
封装: POWER, SIP-6
文件页数: 3/7页
文件大小: 624K
代理商: 5962-8870101ZX
HEAT SINKING
To select the correct heat sink for your application, refer to the
thermal model and governing equation below.
Thermal Model:
Governing Equation:
TJ = PD X (R
θJC + RθCS + RθSA) + TA
Where
TJ
= Junction Temperature
PD
= Total Power Dissipation
R
θJC
= Junction to Case Thermal Resistance
R
θCS
= Case to Heat Sink Thermal Resistance
R
θSA
= Heat Sink to Ambient Thermal Resistance
TC
= Case Temperature
TA
= Ambient Temperature
TS
= Sink Temperature
Example: (TO-3 PACKAGE)
In our example the amplifier application requires the output to
drive a 20 volt peak sine wave across a 5 ohm load for 4 amps of
output current. For a worst case analysis we will treat the 4 amps
peak output current as a D.C. output current. The power supplies
are ±35 VDC.
1.) Find Power Dissipation
PD
= [(quiescent current) X (+VCC - (VCC))] + [(VS - VO) X IOUT]
= (30 mA) X (70V) + (15V) X (4A)
= 2.1W + 60W
= 62.1W
2.) For conservative design, set TJ = +150°C
3.) For this example, worst case TA = +25°C
4.) R
θJC = 1.2°C/W typically for the TO-3 package
5.) R
θCS = 0.15°C/W for most thermal greases
6.) Rearrange governing equation to solve for R
θSA
R
θSA
=(TJ - TA) / PD - (R
θJC) - (RθCS)
= (150°C - 25°C) / 62.1W - (1.2°C/W) - (0.15°C/W)
= 0.66°C/W
The heat sink in this example must have a thermal resistance of
no more than 0.66°C/W to maintain a junction temperature of no
more than +150°C. Since this value of thermal resistance may be
difficult to find, other measures may have to be taken to decrease
the overall power dissipation.
APPLICATION NOTES
CURRENT LIMIT
The MSK 541 has an on-board current limit scheme de-
signed to limit the output drivers anytime output current ex-
ceeds a predetermined limit. The following formula may be
used to determine the value of the current limit resistance
necessary to establish the desired current limit.
RCL (OHMs) = (0.809 volts / current limit in amps) - 0.057 OHM
The 0.057 OHM term takes into account any wire bond and
lead resistance. Since the 0.809 volt term is obtained from
the base emitter voltage drop of a bipolar transistor, the equa-
tion only holds true for operation at +25°C case tempera-
ture. The effect that temperature has on current limit may be
seen on the Current Limit vs. Case Temperature Curve in the
Typical Performance Curves.
Current Limit Connection
See "Application Circuits" in this data sheet for additional
information on current limit connections.
POWER SUPPLY BYPASSING
Both the negative and the positive power supplies must be
effectively decoupled with a high and low frequency bypass
circuit to avoid power supply induced oscillation. An effec-
tive decoupling scheme consists of a 0.1 microfarad ceramic
capacitor in parallel with a 4.7 microfarad tantalum capacitor
from each power supply pin to ground. It is also a good prac-
tice with very high power op-amps, such as the MSK 541, to
place a 30-50 microfarad nonelectrolytic capacitor with a low
effective series resistance in parallel with the other two power
supply decoupling capacitors.
This capacitor will eliminate
any peak output voltage clipping which may occur due to poor
power supply load regulation. All power supply decoupling
capacitors should be placed as close to the package power
supply pins as possible (pins 3 and 6 for the MSK 541).
SAFE OPERATING AREA
The safe operating area curve is a graphical representation
of the power handling capability of the amplifier under various
conditions. The wire bond current carrying capability, transis-
tor junction temperature and secondary breakdown limitations
are all incorporated into the safe operating area curves. All
applications should be checked against the S.O.A. curves to
ensure high M.T.B.F.
3
Rev. F 9/06
相关PDF资料
PDF描述
5962-8870103ZX OP-AMP, 1500 uV OFFSET-MAX, SFM6
5962-8870101YX OP-AMP, 1500 uV OFFSET-MAX, DIP8
5962-8870103YX OP-AMP, 1500 uV OFFSET-MAX, DIP8
5962-8870101UX OP-AMP, 1500 uV OFFSET-MAX, DFM8
5962-8870103UX OP-AMP, 1500 uV OFFSET-MAX, DFM8
相关代理商/技术参数
参数描述
5962-8870201RA 制造商:QP Semiconductor 功能描述:AC377/C NSC DIE - DIP 制造商:Texas Instruments 功能描述:Flip Flop D-Type Bus Interface Pos-Edge 1-Element 20-Pin CDIP Rail
5962-88703012A 制造商:QP Semiconductor 功能描述:Multiplexer 1-Element CMOS 3-ST 8-IN 20-Pin CLLCC
5962-8870301EA 制造商:QP Semiconductor 功能描述:Multiplexer 1-Element CMOS 3-ST 8-IN 16-Pin CDIP
5962-88705013A 制造商:Texas Instruments 功能描述:
5962-8870501KA 制造商:QP Semiconductor 功能描述:Flip Flop D-Type Bus Interface Pos-Edge 3-ST 1-Element 24-Pin CPAK 制造商:Texas Instruments 功能描述:10-BIT D FLIP-FLOP WITH TRI-STATE OUTPUTS