参数资料
型号: AD5253EVAL
厂商: Analog Devices, Inc.
元件分类: 通用总线功能
英文描述: Dual, 256-Tap, Nonvolatile, I2C-Interface, Digital Potentiometers
中文描述: 双路、256抽头、非易失、I2C接口、数字电位器
文件页数: 16/28页
文件大小: 834K
代理商: AD5253EVAL
AD5253/AD5254
RDAC/EEMEM Write
Setting the wiper position requires an RDAC write operation.
The single write operation is shown in Figure 27, and the
consecutive write operation is shown in Figure 28. In
consecutive write operation, if the RDAC is selected and the
address starts at 0, the first data byte goes to RDAC0, the second
data byte goes to RDAC1, the third data byte goes to RDAC2,
and the fourth data byte goes to RDAC3. This operation can be
continued up to eight addresses with four unused addresses; it
then loops back to RDAC0. If the address starts at any of the
eight valid addresses, N, the data first goes to RDAC_N,
RDAC_N + 1, and so on; it loops back to RDAC0 after the
eighth address. The RDAC address is shown in Table 6.
Rev. 0 | Page 16 of 28
While the RDAC wiper setting is controlled by a specific RDAC
register, each RDAC register corresponds to a specific EEMEM
memory location, which provides nonvolatile wiper storage
functionality. The addresses are shown in Table 7. The single
and consecutive write operations also apply to EEMEM write
operations.
There are 12 nonvolatile memory locations, EEMEM4 to
EEMEM15, where users can store 12 bytes of information such
as memory data for other components, look-up table, or system
identification information.
In a write operation to the EEMEM registers, the device disables
the I
2
C interface during the internal write cycle. Acknowledge
polling, which is discussed later in the data sheet, is required to
determine the completion of the write cycle.
RDAC/EEMEM Read
The AD5253/AD5254 provide two different RDAC or EEMEM
read operations. For example, Figure 29 shows the method of
reading the RDAC0 to RDAC3 contents without specifying the
address, assuming address RDAC0 was already selected from
the previous operation. If RDAC_N, other than address 0, is
selected previously, readback starts with address N, followed by
N + 1, and so on.
Figure 30 illustrates the random RDAC or EEMEM read opera-
tion. This operation allows users to specify which RDAC or
EEMEM register is read by first issuing a dummy write
command to change the RDAC address pointer, and then
proceeding with the RDAC read operation at the new address
location.
Table 7. Addresses for Writing (Storing) RDAC Settings and
User-Defined Data to EEMEM Registers (R/W = 0,
CMD/REG = 0, EE/RDAC = 1)
A4
A3
A2
A1
A0
Data Byte Description
0
0
0
0
0
Store RDAC0 Setting to EEMEM0
1
0
0
0
0
1
Store RDAC1 Setting to EEMEM1
1
0
0
0
1
0
Store RDAC2 Setting to EEMEM2
1
0
0
0
1
1
Store RDAC3 Setting to EEMEM3
1
0
0
1
0
0
Store User Data to EEMEM4
0
0
1
0
1
Store User Data to EEMEM5
0
0
1
1
0
Store User Data to EEMEM6
0
0
1
1
1
Store User Data to EEMEM7
0
1
0
0
0
Store User Data to EEMEM8
0
1
0
0
1
Store User Data to EEMEM9
0
1
0
1
0
Store User Data to EEMEM10
0
1
0
1
1
Store User Data to EEMEM11
0
1
1
0
0
Store User Data to EEMEM12
0
1
1
0
1
Store User Data to EEMEM13
0
1
1
1
0
Store User Data to EEMEM14
0
1
1
1
1
Store User Data to EEMEM15
Table 8. Addresses for Reading (Restoring) RDAC Settings
and User Data from EEMEM (R/W = 1, CMD/REG = 0,
EE/RDAC = 1)
A4
A3
A2
A1
A0
Data Byte Description
0
0
0
0
0
Read RDAC0 setting from EEMEM0
0
0
0
0
1
Read RDAC1 setting from EEMEM1
0
0
0
1
0
Read RDAC2 setting from EEMEM2
0
0
0
1
1
Read RDAC3 setting from EEMEM3
0
0
1
0
0
Read User Data from EEMEM4
0
0
1
0
1
Read User Data from EEMEM5
0
0
1
1
0
Read User Data from EEMEM6
0
0
1
1
1
Read User Data from EEMEM7
0
1
0
0
0
Read User Data from EEMEM8
0
1
0
0
1
Read User Data from EEMEM9
0
1
0
1
0
Read User Data from EEMEM10
0
1
0
1
1
Read User Data from EEMEM11
0
1
1
0
0
Read User Data from EEMEM12
0
1
1
0
1
Read User Data from EEMEM13
0
1
1
1
0
Read User Data from EEMEM14
0
1
1
1
1
Read User Data from EEMEM15
1
User can store any 64 RDAC settings for AD5253 or 256 RDAC settings for
AD5254, not limited to current RDAC wiper setting, directly to EEMEM.
相关PDF资料
PDF描述
AD5254BRU1 Dual, 256-Tap, Nonvolatile, I2C-Interface, Digital Potentiometers
AD5254BRU1-RL7 Dual, 256-Tap, Nonvolatile, I2C-Interface, Digital Potentiometers
AD5254BRU10 Dual, 256-Tap, Nonvolatile, I2C-Interface, Digital Potentiometers
AD5254BRU10-RL7 Dual, 256-Tap, Nonvolatile, I2C-Interface, Digital Potentiometers
AD5254BRU100 Dual, 256-Tap, Nonvolatile, I2C-Interface, Digital Potentiometers
相关代理商/技术参数
参数描述
AD5254BRU1 功能描述:IC DGTL POT QUAD 1K 20-TSSOP RoHS:否 类别:集成电路 (IC) >> 数据采集 - 数字电位器 系列:- 标准包装:3,000 系列:DPP 接片:32 电阻(欧姆):10k 电路数:1 温度系数:标准值 300 ppm/°C 存储器类型:非易失 接口:3 线串行(芯片选择,递增,增/减) 电源电压:2.5 V ~ 6 V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:8-WFDFN 裸露焊盘 供应商设备封装:8-TDFN(2x3) 包装:带卷 (TR)
AD5254BRU10 功能描述:IC DGTL POT QUAD 10K I2C 20TSSOP RoHS:否 类别:集成电路 (IC) >> 数据采集 - 数字电位器 系列:- 标准包装:3,000 系列:DPP 接片:32 电阻(欧姆):10k 电路数:1 温度系数:标准值 300 ppm/°C 存储器类型:非易失 接口:3 线串行(芯片选择,递增,增/减) 电源电压:2.5 V ~ 6 V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:8-WFDFN 裸露焊盘 供应商设备封装:8-TDFN(2x3) 包装:带卷 (TR)
AD5254BRU100 功能描述:IC DGTL POT QUAD 100K 20-TSSOP RoHS:否 类别:集成电路 (IC) >> 数据采集 - 数字电位器 系列:- 标准包装:3,000 系列:DPP 接片:32 电阻(欧姆):10k 电路数:1 温度系数:标准值 300 ppm/°C 存储器类型:非易失 接口:3 线串行(芯片选择,递增,增/减) 电源电压:2.5 V ~ 6 V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:8-WFDFN 裸露焊盘 供应商设备封装:8-TDFN(2x3) 包装:带卷 (TR)
AD5254BRU100-RL7 功能描述:IC DGTL POT QUAD 100K 20-TSSOP RoHS:否 类别:集成电路 (IC) >> 数据采集 - 数字电位器 系列:- 标准包装:3,000 系列:DPP 接片:32 电阻(欧姆):10k 电路数:1 温度系数:标准值 300 ppm/°C 存储器类型:非易失 接口:3 线串行(芯片选择,递增,增/减) 电源电压:2.5 V ~ 6 V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:8-WFDFN 裸露焊盘 供应商设备封装:8-TDFN(2x3) 包装:带卷 (TR)
AD5254BRU10-RL7 功能描述:IC DGTL POT QUAD 10K 20-TSSOP RoHS:否 类别:集成电路 (IC) >> 数据采集 - 数字电位器 系列:- 标准包装:3,000 系列:DPP 接片:32 电阻(欧姆):10k 电路数:1 温度系数:标准值 300 ppm/°C 存储器类型:非易失 接口:3 线串行(芯片选择,递增,增/减) 电源电压:2.5 V ~ 6 V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:8-WFDFN 裸露焊盘 供应商设备封装:8-TDFN(2x3) 包装:带卷 (TR)