参数资料
型号: AD5373BSTZ
厂商: Analog Devices Inc
文件页数: 13/29页
文件大小: 0K
描述: IC DAC 14BIT 32CH SER 64-LQFP
标准包装: 1
设置时间: 20µs
位数: 14
数据接口: DSP,MICROWIRE?,QSPI?,串行,SPI?
转换器数目: 32
电压电源: 模拟和数字,双 ±
功率耗散(最大): 250mW
工作温度: -40°C ~ 85°C
安装类型: 表面贴装
封装/外壳: 64-LQFP
供应商设备封装: 64-LQFP(10x10)
包装: 托盘
输出数目和类型: 32 电压,单极;32 电压,双极
采样率(每秒): *
AD5372/AD5373
Rev. C | Page 19 of 28
ADDITIONAL CALIBRATION
The techniques described in the previous section are usually
enough to reduce the zero-scale and full-scale errors in most
applications. However, there are limitations whereby the errors
may not be sufficiently reduced. For example, the offset (C)
register can only be used to reduce the offset caused by the
negative zero-scale error. A positive offset cannot be reduced.
Likewise, if the maximum voltage is below the ideal value, that
is, a negative full-scale error, the gain (M) register cannot be
used to increase the gain to compensate for the error.
These limitations can be overcome by increasing the reference
value. With a 3 V reference, a 12 V span is achieved. The ideal
voltage range, for the AD5372 or the AD5373, is 4 V to +8 V.
Using a +3.1 V reference increases the range to 4.133 V to
+8.2667 V. Clearly, in this case, the offset and gain errors are
insignificant, and the M and C registers can be used to raise
the negative voltage to 4 V and then reduce the maximum
voltage to +8 V to give the most accurate values possible.
RESET FUNCTION
The reset function is initiated by the RESET pin. On the rising
edge of RESET, the AD5372/AD5373 state machine initiates a
reset sequence to reset the X, M, and C registers to their default
values. This sequence typically takes 300 μs, and the user should
not write to the part during this time. On power-up, it is recom-
mended that the user bring RESET high as soon as possible to
properly initialize the registers.
When the reset sequence is complete (and provided that CLR is
high), the DAC output is at a potential specified by the default
register settings, which is equivalent to SIGGNDx. The DAC
outputs remain at SIGGNDx until the X, M, or C register is
updated and LDAC is taken low. The AD5372/AD5373 can be
returned to the default state by pulsing RESET low for at least
30 ns. Note that, because the reset function is triggered by the
rising edge, bringing RESET low has no effect on the operation
of the AD5372/AD5373.
CLEAR FUNCTION
CLR is an active low input that should be high for normal opera-
tion. The CLR pin has an internal 500 kΩ pull-down resistor.
When CLR is low, the input to each of the DAC output buffer
stages (VOUT0 to VOUT31) is switched to the externally set
potential on the relevant SIGGNDx pin. While CLR is low, all
LDAC pulses are ignored. When CLR is taken high again, the
DAC outputs return to their previous values. The contents of the
input registers and DAC Register 0 to DAC Register 31 are not
affected by taking CLR low. To prevent glitches from appearing
on the outputs, CLR should be brought low whenever the output
span is adjusted by writing to the offset DAC.
BUSY AND LDAC FUNCTIONS
The value of an X2 (A or B) register is calculated each time the
user writes new data to the corresponding X1, C, or M register.
During the calculation of X2, the BUSY output goes low. While
BUSY is low, the user can continue writing new data to the X1,
M, or C register (see the
section for more
details), but no DAC output updates can take place.
The BUSY pin is bidirectional and has a 50 kΩ internal pull-up
resistor. When multiple AD5372 or AD5373 devices are used in
one system, the BUSY pins can be tied together. This is useful
when it is required that no DAC in any device be updated until
all other DACs are ready. When each device has finished updating
the X2 (A or B) registers, it releases the BUSY pin. If another
device has not finished updating its X2 registers, it holds BUSY
low, thus delaying the effect of LDAC going low.
The DAC outputs are updated by taking the LDAC input low. If
LDAC goes low while BUSY is active, the LDAC event is stored
and the DAC outputs are updated immediately after BUSY goes
high. A user can also hold the LDAC input permanently low. In
this case, the DAC outputs are updated immediately after BUSY
goes high. Whenever the A/B select registers are written to, BUSY
also goes low, for approximately 500 ns.
The AD5372/AD5373 have flexible addressing that allows
writing of data to a single channel, all channels in a group, the
same channel in Group 0 to Group 3, the same channel in
Group 1 to Group 3, or all channels in the device. This means
that 1, 4, 8, or 32 DAC register values may need to be calculated
and updated. Because there is only one multiplier shared among
32 channels, this task must be done sequentially so that the
length of the BUSY pulse varies according to the number of
channels being updated.
Table 9. BUSY Pulse Widths
Action
BUSY Pulse Width1
Loading input, C, or M to 1 channel2
1.5 μs maximum
Loading input, C, or M to 4 channels
3.3 μs maximum
Loading input, C, or M to 8 channels
5.7 μs maximum
Loading input, C, or M to 32 channels
20.1 μs maximum
1
BUSY pulse width = ((number of channels + 1) × 600 ns) + 300 ns.
2 A single channel update is typically 1 μs.
The AD5372/AD5373 contain an extra feature whereby a DAC
register is not updated unless its X2A or X2B register has been
written to since the last time LDAC was brought low. Normally,
when LDAC is brought low, the DAC registers are filled with the
contents of the X2A or X2B register, depending on the setting of
the A/B select registers. However, the AD5372/AD5373 update
the DAC register only if the X2A or X2B data has changed,
thereby removing unnecessary digital crosstalk.
相关PDF资料
PDF描述
AD5378ABC IC DAC 14BIT 32CHAN 108CSPBGA
AD5379ABC IC DAC 14BIT 40CH 108-CSPBGA
AD5380BSTZ-3 IC DAC 14BIT 40CHAN 3V 100LQFP
AD5381BSTZ-5 IC DAC 12BIT 40CH 5V 100-LQFP
AD5382BSTZ-3 IC DAC 14BIT 32CHAN 3V 100LQFP
相关代理商/技术参数
参数描述
AD5373BSTZ-REEL 功能描述:IC DAC 14BIT 32CH SER 64-LQFP RoHS:是 类别:集成电路 (IC) >> 数据采集 - 数模转换器 系列:- 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:1,000 系列:- 设置时间:1µs 位数:8 数据接口:串行 转换器数目:8 电压电源:双 ± 功率耗散(最大):941mW 工作温度:0°C ~ 70°C 安装类型:表面贴装 封装/外壳:24-SOIC(0.295",7.50mm 宽) 供应商设备封装:24-SOIC W 包装:带卷 (TR) 输出数目和类型:8 电压,单极 采样率(每秒):*
AD5378 制造商:AD 制造商全称:Analog Devices 功能描述:32-Channel, 14-Bit, Parallel and Serial Input, Bipolar Voltage Output DAC
AD5378ABC 功能描述:IC DAC 14BIT 32CHAN 108CSPBGA RoHS:否 类别:集成电路 (IC) >> 数据采集 - 数模转换器 系列:- 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:1,000 系列:- 设置时间:1µs 位数:8 数据接口:串行 转换器数目:8 电压电源:双 ± 功率耗散(最大):941mW 工作温度:0°C ~ 70°C 安装类型:表面贴装 封装/外壳:24-SOIC(0.295",7.50mm 宽) 供应商设备封装:24-SOIC W 包装:带卷 (TR) 输出数目和类型:8 电压,单极 采样率(每秒):*
AD5378ABCZ 功能描述:IC DAC 14BIT 32CHAN 108CSPBGA RoHS:是 类别:集成电路 (IC) >> 数据采集 - 数模转换器 系列:- 标准包装:1 系列:- 设置时间:4.5µs 位数:12 数据接口:串行,SPI? 转换器数目:1 电压电源:单电源 功率耗散(最大):- 工作温度:-40°C ~ 125°C 安装类型:表面贴装 封装/外壳:8-SOIC(0.154",3.90mm 宽) 供应商设备封装:8-SOICN 包装:剪切带 (CT) 输出数目和类型:1 电压,单极;1 电压,双极 采样率(每秒):* 其它名称:MCP4921T-E/SNCTMCP4921T-E/SNRCTMCP4921T-E/SNRCT-ND
AD5378ABCZ1 制造商:AD 制造商全称:Analog Devices 功能描述:32-Channel, 14-Bit, Parallel and Serial Input, Bipolar Voltage Output DAC