参数资料
型号: AD5383BST-5
厂商: ANALOG DEVICES INC
元件分类: DAC
英文描述: 32-Channel, 3 V/5 V, Single-Supply, 14-Bit, Voltage Output DAC
中文描述: PARALLEL, WORD INPUT LOADING, 6 us SETTLING TIME, 12-BIT DAC, PQFP100
封装: 14 X 14 MM, MO-026BED, LQFP-100
文件页数: 17/40页
文件大小: 616K
代理商: AD5383BST-5
AD5382
TERMINOLOGY
Rev. 0 | Page 17 of 40
Relative Accuracy
Relative accuracy or endpoint linearity is a measure of the
maximum deviation from a straight line passing through the
endpoints of the DAC transfer function. It is measured after
adjusting for zero-scale error and full-scale error, and is
expressed in LSB.
Differential Nonlinearity
Differential nonlinearity is the difference between the measured
change and the ideal 1 LSB change between any two adjacent
codes. A specified differential nonlinearity of 1 LSB maximum
ensures monotonicity.
Zero-Scale Error
Zero-scale error is the error in the DAC output voltage when all
0s are loaded into the DAC register. Ideally, with all 0s loaded to
the DAC and m = all 1s, c = 2
n – 1
:
VOUT
(
Zero-Scale
)
= 0
V
Zero-scale error is a measure of the difference between VOUT
(actual) and VOUT (ideal), expressed in mV. It is mainly due to
offsets in the output amplifier.
Offset Error
Offset error is a measure of the difference between VOUT
(actual) and VOUT (ideal) in the linear region of the transfer
function, expressed in mV. Offset error is measured on the
AD5382-5 with Code 32 loaded into the DAC register, and on
the AD5382-3 with Code 64.
Gain Error
Gain Error is specified in the linear region of the output range
between V
OUT
= 10 mV and V
OUT
= AV
DD
– 50 mV. It is the
deviation in slope of the DAC transfer characteristic from the
ideal and is expressed in %FSR with the DAC output unloaded.
DC Crosstalk
This is the dc change in the output level of one DAC at midscale
in response to a full-scale code (all 0s to all 1s, and vice versa)
and output change of all other DACs. It is expressed in LSB.
DC Output Impedance
This is the effective output source resistance. It is dominated by
package lead resistance.
Output Voltage Settling Time
This is the amount of time it takes for the output of a DAC to
settle to a specified level for a to full-scale input change,
and is measured from the BUSY rising edge.
Digital-to-Analog Glitch Energy
This is the amount of energy injected into the analog output at
the major code transition. It is specified as the area of the glitch
in nV-s. It is measured by toggling the DAC register data
between 0x1FFF and 0x2000.
DAC-to-DAC Crosstalk
DAC-to-DAC crosstalk is the glitch impulse that appears at the
output of one DAC due to both the digital change and to the
subsequent analog output change at another DAC. The victim
channel is loaded with midscale. DAC-to-DAC crosstalk is
specified in nV-s.
Digital Crosstalk
The glitch impulse transferred to the output of one converter
due to a change in the DAC register code of another converter
is defined as the digital crosstalk and is specified in nV-s.
Digital Feedthrough
When the device is not selected, high frequency logic activity on
the device’s digital inputs can be capacitively coupled both
across and through the device to show up as noise on the
VOUT pins. It can also be coupled along the supply and ground
lines. This noise is digital feedthrough.
Output Noise Spectral Density
This is a measure of internally generated random noise.
Random noise is characterized as a spectral density (voltage per
√Hertz). It is measured by loading all DACs to midscale and
measuring noise at the output. It is measured in nV/√Hz in a
1 Hz bandwidth at 10 kHz.
相关PDF资料
PDF描述
AD5383 32-Channel, 3 V/5 V, Single-Supply, 12-Bit, Voltage Output DAC
AD5383BST-3-REEL 32-Channel, 3 V/5 V, Single-Supply, 12-Bit, Voltage Output DAC
AD5383BST-5-REEL 32-Channel, 3 V/5 V, Single-Supply, 12-Bit, Voltage Output DAC
AD5384BBC-3 32-Channel, 3 V/5 V, Single-Supply, 14-Bit, Voltage Output DAC
AD5384BBC-5 32-Channel, 3 V/5 V, Single-Supply, 14-Bit, Voltage Output DAC
相关代理商/技术参数
参数描述
AD5383BST-5-REEL 制造商:Analog Devices 功能描述:DAC 32-CH Resistor-String 12-bit 100-Pin LQFP T/R
AD5383BSTZ-3 功能描述:IC DAC 12BIT 32CHAN 3V 100LQFP RoHS:是 类别:集成电路 (IC) >> 数据采集 - 数模转换器 系列:- 标准包装:1 系列:- 设置时间:4.5µs 位数:12 数据接口:串行,SPI? 转换器数目:1 电压电源:单电源 功率耗散(最大):- 工作温度:-40°C ~ 125°C 安装类型:表面贴装 封装/外壳:8-SOIC(0.154",3.90mm 宽) 供应商设备封装:8-SOICN 包装:剪切带 (CT) 输出数目和类型:1 电压,单极;1 电压,双极 采样率(每秒):* 其它名称:MCP4921T-E/SNCTMCP4921T-E/SNRCTMCP4921T-E/SNRCT-ND
AD5383BSTZ-5 功能描述:IC DAC 12BIT 32CH 5V 100-LQFP RoHS:是 类别:集成电路 (IC) >> 数据采集 - 数模转换器 系列:- 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:1,000 系列:- 设置时间:1µs 位数:8 数据接口:串行 转换器数目:8 电压电源:双 ± 功率耗散(最大):941mW 工作温度:0°C ~ 70°C 安装类型:表面贴装 封装/外壳:24-SOIC(0.295",7.50mm 宽) 供应商设备封装:24-SOIC W 包装:带卷 (TR) 输出数目和类型:8 电压,单极 采样率(每秒):*
AD5384BBC-3 功能描述:IC DAC 14BIT 40CH 3V 100-CSPBGA RoHS:否 类别:集成电路 (IC) >> 数据采集 - 数模转换器 系列:- 标准包装:2,400 系列:- 设置时间:- 位数:18 数据接口:串行 转换器数目:3 电压电源:模拟和数字 功率耗散(最大):- 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:36-TFBGA 供应商设备封装:36-TFBGA 包装:带卷 (TR) 输出数目和类型:* 采样率(每秒):*
AD5384BBC-3REEL7 功能描述:IC DAC 14BIT 40CH 3V 100-CSPBGA RoHS:否 类别:集成电路 (IC) >> 数据采集 - 数模转换器 系列:- 标准包装:2,400 系列:- 设置时间:- 位数:18 数据接口:串行 转换器数目:3 电压电源:模拟和数字 功率耗散(最大):- 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:36-TFBGA 供应商设备封装:36-TFBGA 包装:带卷 (TR) 输出数目和类型:* 采样率(每秒):*