参数资料
型号: AD8638ARZ-REEL7
厂商: Analog Devices Inc
文件页数: 6/20页
文件大小: 0K
描述: IC OPAMP CHOPPER R-R 37MA 8SOIC
标准包装: 1,000
放大器类型: 自动调零
电路数: 1
输出类型: 满摆幅
转换速率: 2 V/µs
增益带宽积: 1.5MHz
电流 - 输入偏压: 1pA
电压 - 输入偏移: 3µV
电流 - 电源: 1.25mA
电流 - 输出 / 通道: 37mA
电压 - 电源,单路/双路(±): 5 V ~ 16 V,±2.5 V ~ 8 V
工作温度: -40°C ~ 125°C
安装类型: 表面贴装
封装/外壳: 8-SOIC(0.154",3.90mm 宽)
供应商设备封装: 8-SO
包装: 带卷 (TR)
AD8638/AD8639
Rev. F | Page 14 of 20
THEORY OF OPERATION
The AD8638/AD8639 are single-supply and dual-supply, ultrahigh
precision, rail-to-rail output operational amplifiers. The typical
offset voltage of 3 μV allows the amplifiers to be easily configured
for high gains without risk of excessive output voltage errors. The
extremely small temperature drift of 30 nV/°C ensures a minimum
offset voltage error over the entire temperature range of 40°C
to +125°C, making the amplifiers ideal for a variety of sensitive
measurement applications in harsh operating environments.
The AD8638/AD8639 achieve a high degree of precision
through a patented auto-zeroing topology. This unique
topology allows the AD8638/AD8639 to maintain low offset
voltage over a wide temperature range and over the operating
lifetime. The AD8638/AD8639 also optimize the noise and
bandwidth over previous generations of auto-zero amplifiers,
offering the lowest voltage noise of any auto-zero amplifier by
more than 50%.
Previous designs used either auto-zeroing or chopping to add
precision to the specifications of an amplifier. Auto-zeroing
results in low noise energy at the auto-zeroing frequency, at the
expense of higher low frequency noise due to aliasing of wide-
band noise into the auto-zeroed frequency band. Chopping
results in lower low frequency noise at the expense of larger
noise energy at the chopping frequency. The AD8638/AD8639
use both auto-zeroing and chopping in a patented ping-pong
arrangement to obtain lower low frequency noise together with
lower energy at the chopping and auto-zeroing frequencies,
maximizing the SNR for the majority of applications without
the need for additional filtering. The relatively high clock
frequency of 15 kHz simplifies filter requirements for a wide,
useful, noise-free bandwidth.
The AD8638 is among the few auto-zero amplifiers offered in
the 5-lead SOT-23 package. This provides significant improve-
ment over the ac parameters of previous auto-zero amplifiers. The
AD8638/AD8639 have low noise over a relatively wide bandwidth
(0 Hz to 10 kHz) and can be used where the highest dc precision is
required. In systems with signal bandwidths ranging from 5 kHz
to 10 kHz, the AD8638/AD8639 provide true 16-bit accuracy,
making this device the best choice for very high resolution
systems.
1/f NOISE
1/f noise, also known as pink noise, is a major contributor to
errors in dc-coupled measurements. This 1/f noise error term
can be in the range of several microvolts or more and, when
amplified by the closed-loop gain of the circuit, can show up
as a large output signal. For example, when an amplifier with
5 μV p-p 1/f noise is configured for a gain of 1000, its output has
5 mV of error due to the 1/f noise. However, the AD8638/AD8639
eliminate 1/f noise internally and thus significantly reduce
output errors.
The internal elimination of 1/f noise is accomplished as follows:
1/f noise appears as a slowly varying offset to AD8638/AD8639
inputs. Auto-zeroing corrects any dc or low frequency offset.
Therefore, the 1/f noise component is essentially removed,
leaving the AD8638/AD8639 free of 1/f noise.
INPUT VOLTAGE RANGE
The AD8638/AD8639 are not rail-to-rail input amplifiers;
therefore, care is required to ensure that both inputs do not
exceed the input voltage range. Under normal negative feedback
operating conditions, the amplifier corrects its output to ensure
that the two inputs are at the same voltage. However, if either
input exceeds the input voltage range, the loop opens and large
currents begin to flow through the ESD protection diodes in the
amplifier.
These diodes are connected between the inputs and each supply
rail to protect the input transistors against an electrostatic discharge
event, and they are normally reverse-biased. However, if the
input voltage exceeds the supply voltage, these ESD diodes can
become forward-biased. Without current limiting, excessive
amounts of current may flow through these diodes, causing
permanent damage to the device. If inputs are subject to over-
voltage, insert appropriate series resistors to limit the diode
current to less than 10 mA maximum.
OUTPUT PHASE REVERSAL
Output phase reversal occurs in some amplifiers when the input
common-mode voltage range is exceeded. As common-mode
voltage is moved outside the common-mode range, the outputs
of these amplifiers can suddenly jump in the opposite direction
to the supply rail. This is the result of the differential input pair
shutting down, causing a radical shifting of internal voltages
that results in the erratic output behavior.
The AD8638/AD8639 amplifiers have been carefully designed
to prevent any output phase reversal if both inputs are main-
tained within the specified input voltage range. If one or both
inputs exceed the input voltage range but remain within the
supply rails, an internal loop opens and the output varies.
Therefore, the inputs should always be less than at least 2 V
below the positive supply.
OVERLOAD RECOVERY TIME
Many auto-zero amplifiers are plagued by a long overload recovery
time, often in milliseconds, due to the complicated settling
behavior of the internal nulling loops after saturation of the
outputs. The AD8638/AD8639 are designed so that internal
settling occurs within two clock cycles after output saturation
happens. This results in a much shorter recovery time, less than
50 μs, when compared to other auto-zero amplifiers. The wide
bandwidth of the AD8638/AD8639 enhances performance when
the parts are used to drive loads that inject transients into the
outputs. This is a common situation when an amplifier is used
to drive the input of switched capacitor ADCs.
相关PDF资料
PDF描述
TSW-124-23-L-D CONN HEADER 48POS .100" DL GOLD
1V5KE11A TVS UNIDIRECT 11V 1500W DO201AE
TSW-125-23-L-D CONN HEADER 50POS .100" DL GOLD
89008-115 PF VERT SIG HDR STD 48MM-5ROW
TSW-126-23-L-D CONN HEADER 52POS .100" DL GOLD
相关代理商/技术参数
参数描述
AD8639 制造商:AD 制造商全称:Analog Devices 功能描述:16 V Auto-Zero, Rail-to-Rail Output Operational Amplifiers
AD8639ACPZ-R2 功能描述:IC OPAMP CHOPPER R-R DUAL 8LFCSP RoHS:是 类别:集成电路 (IC) >> Linear - Amplifiers - Instrumentation 系列:- 标准包装:73 系列:Over-The-Top® 放大器类型:通用 电路数:4 输出类型:满摆幅 转换速率:0.07 V/µs 增益带宽积:200kHz -3db带宽:- 电流 - 输入偏压:1nA 电压 - 输入偏移:285µV 电流 - 电源:50µA 电流 - 输出 / 通道:25mA 电压 - 电源,单路/双路(±):2 V ~ 44 V,±1 V ~ 22 V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:16-WFDFN 裸露焊盘 供应商设备封装:16-DFN-EP(5x3) 包装:管件
AD8639ACPZ-REEL 功能描述:IC OPAMP CHOPPER R-R DUAL 8LFCSP RoHS:是 类别:集成电路 (IC) >> Linear - Amplifiers - Instrumentation 系列:- 标准包装:50 系列:- 放大器类型:通用 电路数:2 输出类型:满摆幅 转换速率:1.8 V/µs 增益带宽积:6.5MHz -3db带宽:4.5MHz 电流 - 输入偏压:5nA 电压 - 输入偏移:100µV 电流 - 电源:65µA 电流 - 输出 / 通道:35mA 电压 - 电源,单路/双路(±):1.8 V ~ 5.25 V,±0.9 V ~ 2.625 V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:10-TFSOP,10-MSOP(0.118",3.00mm 宽) 供应商设备封装:10-MSOP 包装:管件
AD8639ACPZ-REEL7 功能描述:IC OPAMP CHOPPER R-R DUAL 8LFCSP RoHS:是 类别:集成电路 (IC) >> Linear - Amplifiers - Instrumentation 系列:- 产品培训模块:Differential Circuit Design Techniques for Communication Applications 标准包装:1 系列:- 放大器类型:RF/IF 差分 电路数:1 输出类型:差分 转换速率:9800 V/µs 增益带宽积:- -3db带宽:2.9GHz 电流 - 输入偏压:3µA 电压 - 输入偏移:- 电流 - 电源:40mA 电流 - 输出 / 通道:- 电压 - 电源,单路/双路(±):3 V ~ 3.6 V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:16-VQFN 裸露焊盘,CSP 供应商设备封装:16-LFCSP-VQ 包装:剪切带 (CT) 产品目录页面:551 (CN2011-ZH PDF) 其它名称:ADL5561ACPZ-R7CT
AD8639ARMZ 功能描述:IC OPAMP CHOPPER R-R DUAL 8MSOP RoHS:是 类别:集成电路 (IC) >> Linear - Amplifiers - Instrumentation 系列:- 标准包装:50 系列:- 放大器类型:J-FET 电路数:2 输出类型:- 转换速率:3.5 V/µs 增益带宽积:1MHz -3db带宽:- 电流 - 输入偏压:30pA 电压 - 输入偏移:2000µV 电流 - 电源:200µA 电流 - 输出 / 通道:- 电压 - 电源,单路/双路(±):7 V ~ 36 V,±3.5 V ~ 18 V 工作温度:0°C ~ 70°C 安装类型:通孔 封装/外壳:8-DIP(0.300",7.62mm) 供应商设备封装:8-PDIP 包装:管件