参数资料
型号: ADA4930-1YCPZ-R2
厂商: Analog Devices Inc
文件页数: 11/29页
文件大小: 0K
描述: IC DIFF AMP 1.35GHZ 16-LFCSP
标准包装: 1
放大器类型: 差分
电路数: 1
输出类型: 差分
转换速率: 3400 V/µs
-3db带宽: 1.35GHz
电流 - 输入偏压: 23µA
电压 - 输入偏移: 150µV
电流 - 电源: 34mA
电流 - 输出 / 通道: 30mA
电压 - 电源,单路/双路(±): 3.3V,5V
工作温度: -40°C ~ 105°C
安装类型: 表面贴装
封装/外壳: 16-VFQFN 裸露焊盘,CSP
供应商设备封装: 16-LFCSP-VQ
包装: 标准包装
其它名称: ADA4930-1YCPZ-R2DKR
ADA4930-1/ADA4930-2
Rev. A | Page 18 of 28
Table 11. Output Noise Voltage Density Calculations for Matched Feedback Networks
Input Noise Contribution
Input Noise Term
Input Noise
Voltage Density
Output
Multiplication Factor
Differential Output Noise
Voltage Density Terms
Differential Input
vnIN
GN
vnOD1 = GN(vnIN)
Inverting Input
inIN+
inIN+ × (RF2)
1
vnOD2 = (inIN+)(RF2)
Noninverting Input
inIN
inIN × (RF1)
1
vnOD3 = (inIN)(RF1)
VOCM Input
vnCM
0
vnOD4 = 0
Gain Resistor RG1
vnRG1
(4kTRG1)1/2
RF1/RG1
vnOD5 = (RF1/RG1)(4kTRG1)1/2
Gain Resistor RG2
vnRG2
(4kTRG2)1/2
RF2/RG2
vnOD6 = (RF2/RG2)(4kTRG2)1/2
Feedback Resistor RF1
vnRF1
(4kTRF1)1/2
1
vnOD7 = (4kTRF1)1/2
Feedback Resistor RF2
vnRF2
(4kTRF2)1/2
1
vnOD8 = (4kTRF2)1/2
Table 12. Differential Input, DC-Coupled, VS = 5 V
Nominal Gain (dB)
RF1, RF2 (Ω)
RG1, RG2 (Ω)
RIN, dm (Ω)
Differential Output Noise Density (nV/√Hz)
0
301
602
4.9
6
301
150
300
6.2
10
301
95.3
190.6
7.8
14
301
60.4
120.4
10.1
Table 13. Single-Ended Ground-Referenced Input, DC-Coupled, RS = 50 Ω, VS = 5 V
Nominal Gain (dB)
RF1, RF2 (Ω)
RG1 (Ω)
RT (Ω)
RIN, cm (Ω)
Differential Output Noise Density (nV/√Hz)
0
301
142
64.2
190.67
170
5.9
6
301
63.4
84.5
95.06
95
7.8
10
301
33.2
1 k
53.54
69.3
9.3
14
301
10.2
1.15 k
17.5
57.7
10.4
1 RG2 = RG1 + (RS||RT).
Table 11 summarizes the input noise sources, the multiplication
factors, and the output-referred noise density terms.
Table 12 and Table 13 list several common gain settings, associated
resistor values, input impedance, and output noise density for
both balanced and unbalanced input configurations.
IMPACT OF MISMATCHES IN THE FEEDBACK
NETWORKS
As previously mentioned, even if the external feedback networks
(RF/RG) are mismatched, the internal common-mode feedback
loop still forces the outputs to remain balanced. The amplitudes
of the signals at each output remain equal and 180° out of phase.
The input-to-output differential mode gain varies proportionately
to the feedback mismatch, but the output balance is unaffected.
The gain from the VOCM pin to VO, dm is equal to
2(β1 β2)/(β1 + β2)
When β1 = β2, this term goes to zero and there is no differential
output voltage due to the voltage on the VOCM input (including
noise). The extreme case occurs when one loop is open and the
other has 100% feedback; in this case, the gain from VOCM input
to VO,dm is either +2 or 2, depending on which loop is closed. The
feedback loops are nominally matched to within 1% in most
applications, and the output noise and offsets due to the VOCM
input are negligible. If the loops are intentionally mismatched by a
large amount, it is necessary to include the gain term from VOCM
to VO, dm and account for the extra noise. For example, if β1 = 0.5
and β2 = 0.25, the gain from VOCM to VO, dm is 0.67. If the VOCM pin
is set to 0.9 V, a differential offset voltage is present at the output of
(0.9 V)(0.67) = 0.6 V. The differential output noise contribution is
(5 nV/√Hz)(0.67) = 3.35 nV/√Hz. Both of these results are
undesirable in most applications; therefore, it is best to use
nominally matched feedback factors.
Mismatched feedback networks also result in a degradation of
the ability of the circuit to reject input common-mode signals,
much the same as for a four-resistor difference amplifier made
from a conventional op amp.
As a practical summarization of the previous issues, resistors of
1% tolerance produce a worst-case input CMRR of approximately
40 dB, a worst-case differential-mode output offset of 9 mV due
to a 0.9 V VOCM input, negligible VOCM noise contribution, and
no significant degradation in output balance error.
INPUT COMMON-MODE VOLTAGE RANGE
The input common-mode range at the summing nodes of the
ADA4930-1/ADA4930-2 is specified as 0.3 V to 1.5 V at VS = 3.3 V.
To avoid nonlinearities, the voltage swing at the +IN and IN
terminals must be confined to these ranges.
相关PDF资料
PDF描述
ADA4932-1YCPZ-RL IC AMP DIFF LP 80MA 16LFCSP
ADA4939-2YCPZ-R7 IC AMP DIFF DUAL ULDIST 24LFCSP
ADA4940-1ARZ-R7 IC DIFF ADC DVR 18BIT LN 8SOIC
ADA4950-1YCPZ-RL IC AMP DIFF LP 114MA 16LFCSP
ADEL2020ARZ-20-RL IC OPAMP CF LN LP 60MA 20SOIC
相关代理商/技术参数
参数描述
ADA4930-1YCPZ-R7 功能描述:差分放大器 UltraLow Dist Low Vltg ADC Driver RoHS:否 制造商:Analog Devices 通道数量:1 Channel 带宽:900 MHz 可用增益调整:5.6 dB to 20 dB 输入补偿电压:1 mV at 5 V 共模抑制比(最小值):67 dB 工作电源电压:11 V 电源电流:28 mA 最大工作温度:+ 85 C 最小工作温度:- 40 C 安装风格:SMD/SMT 封装 / 箱体:SOIC-8 封装:Reel
ADA4930-1YCPZ-R7_PROMO 制造商:Analog Devices 功能描述:IC DIFF AMPLIFIER 1.35GHZ L
ADA4930-1YCPZ-RL 制造商:Analog Devices 功能描述:SP Amp DIFF AMP Single 5.5V 16-Pin LFCSP EP T/R 制造商:Analog Devices 功能描述:ULTRALOW DIST LOW VLTG ADC DRIVER - Tape and Reel 制造商:Analog Devices Inc. 功能描述:Differential Amplifiers UltraLow Dist Low Vltg ADC Driver
ADA4930-2 制造商:AD 制造商全称:Analog Devices 功能描述:Ultralow Noise Drivers for Low Voltage ADCs
ADA4930-2YCP-EBZ 功能描述:BOARD EVAL FOR ADA4930-2YCP RoHS:是 类别:编程器,开发系统 >> 评估板 - 运算放大器 系列:- 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:1 系列:-