参数资料
型号: ADP1873-0.3-EVALZ
厂商: Analog Devices Inc
文件页数: 27/40页
文件大小: 0K
描述: BOARD EVAL FOR ADP1873-0.3
标准包装: 1
系列: *
C IN, min =
I LOAD , MAX 15 A
? I L ≈
I LOAD
( V IN , MAX ? V OUT ) V OUT
? I L × f SW
Data Sheet
THERMAL CONSIDERATIONS
The ADP1872/ADP1873 are used for dc-to-dc, step down, high
current applications that have an on-board controller and on-board
MOSFET drivers. Because applications may require up to 20 A of
load current delivery and be subjected to high ambient temperature
surroundings, the selection of external upper side and lower side
MOSFETs must be associated with careful thermal consideration
to not exceed the maximum allowable junction temperature
of 125°C. To avoid permanent or irreparable damage if the
junction temperature reaches or exceeds 155°C, the part enters
thermal shutdown, turning off both external MOSFETs, and
does not re-enable until the junction temperature cools to 140°C
(see the Thermal Shutdown section).
The maximum junction temperature allowed for the ADP1872/
ADP1873 ICs is 125°C. This means that the sum of the ambient
temperature (T A ) and the rise in package temperature (T R ), which
is caused by the thermal impedance of the package and the internal
power dissipation, should not exceed 125°C, as dictated by
T J = T R × T A
where:
T J is the maximum junction temperature.
T R is the rise in package temperature due to the power
dissipated from within.
T A is the ambient temperature.
The rise in package temperature is directly proportional to its
thermal impedance characteristics. The following equation
represents this proportionality relationship:
T R = θ JA × P DR (LOSS)
where:
θ JA is the thermal resistance of the package from the junction to
the outside surface of the die, where it meets the surrounding air.
P DR (LOSS) is the overall power dissipated by the IC.
The bulk of the power dissipated is due to the gate capacitance
of the external MOSFETs. The power loss equation of the
MOSFET drivers (see the MOSFET Driver Loss section in the
P DR (LOSS) = [ V DR × ( f SW C upperFET V DR + I BIAS )] + [ V DD ×
( f SW C lowerFET V DD + I BIAS )]
where:
C upperFET is the input gate capacitance of the upper side MOSFET.
C lowerFET is the input gate capacitance of the lower side MOSFET.
I BIAS is the dc current (2 mA) flowing into the upper side and
lower side drivers.
V DR is the driver bias voltage (that is, the low input voltage (V DD )
minus the rectifier drop (see Figure 80)).
V DD is the bias voltage
ADP1872/ADP1873
For example, if the external MOSFET characteristics are θ JA
(10-lead MSOP) = 171.2°C/W, f SW = 300 kHz, I BIAS = 2 mA,
C upperFET = 3.3 nF, C lowerFET = 3.3 nF, V DR = 5.12 V, and V DD = 5.5 V,
then the power loss is
P DR (LOSS) = [ V DR × ( f SW C upperFET V DR + I BIAS )] + [ V DD ×
( f SW C lowerFET V DD + I BIAS )]
= [5.12 × (300 × 10 3 × 3.3 × 10 ?9 × 5.12 + 0.002)] +
[5.5 × (300 × 10 3 ×3.3 × 10 ?9 × 5.5 + 0.002)]
= 77.13 mW
The rise in package temperature is
T R = θ JA × P DR (LOSS)
= 171.2°C × 77.13 mW
= 13.2°C
Assuming a maximum ambient temperature environment of 85°C,
the junction temperature is
T J = T R × T A = 13.2°C + 85°C = 98.2°C
which is below the maximum junction temperature of 125°C.
DESIGN EXAMPLE
The ADP1872/ADP1873 are easy to use, requiring only a few
design criteria. For example, the example outlined in this section
uses only four design criteria: V OUT = 1.8 V, I LOAD = 15 A (pulsing),
VIN = 12 V (typical), and f SW = 300 kHz.
Input Capacitor
The maximum input voltage ripple is usually 1% of the
minimum input voltage (11.8 V × 0.01 = 120 mV).
V RIPP = 120 mV
V MAX, RIPPLE = V RIPP ? ( I LOAD, MAX × ESR )
= 120 mV ? (15 A × 0.001) = 45 mV
=
4 f SW V MAX , RIPPLE 4 × 300 × 10 3 × 105 mV
= 120 μF
Choose five 22 μF ceramic capacitors. The overall ESR of five
22 μF ceramic capacitors is less than 1 mΩ.
I RMS = I LOAD /2 = 7.5 A
P CIN = ( I RMS ) 2 × ESR = (7.5A) 2 × 1 mΩ = 56.25 mW
Inductor
Determining inductor ripple current amplitude:
=5A
3
so calculating for the inductor value
L = ×
V IN, MAX
5 V × 300 × 10
=
(13 . 2 V ? 1 . 8 V )
3
×
1 . 8 V
13 . 2 V
= 1.03 μH
Rev. B | Page 27 of 40
相关PDF资料
PDF描述
HSC07DREN-S13 CONN EDGECARD 14POS .100 EXTEND
EEM12DTAH CONN EDGECARD 24POS R/A .156 SLD
EEM12DTAD CONN EDGECARD 24POS R/A .156 SLD
EBM11DSXI CONN EDGECARD 22POS DIP .156 SLD
LQW2BASR68J00L INDUCTOR RF 680NH 190MA 0805
相关代理商/技术参数
参数描述
ADP1873-1.0-EVALZ 功能描述:BOARD EVAL FOR ADP1873-1.0 RoHS:是 类别:编程器,开发系统 >> 评估板 - DC/DC 与 AC/DC(离线)SMPS 系列:* 产品培训模块:Obsolescence Mitigation Program 标准包装:1 系列:True Shutdown™ 主要目的:DC/DC,步升 输出及类型:1,非隔离 功率 - 输出:- 输出电压:- 电流 - 输出:1A 输入电压:2.5 V ~ 5.5 V 稳压器拓扑结构:升压 频率 - 开关:3MHz 板类型:完全填充 已供物品:板 已用 IC / 零件:MAX8969
ADP1873ARMZ-0.3-R7 功能描述:IC REG CTRLR BUCK PWM CM 10-MSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:2,500 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:500kHz 占空比:100% 电源电压:8.2 V ~ 30 V 降压:无 升压:无 回扫:是 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:是 工作温度:0°C ~ 70°C 封装/外壳:8-DIP(0.300",7.62mm) 包装:管件 产品目录页面:1316 (CN2011-ZH PDF)
ADP1873ARMZ-0.6-R7 功能描述:IC REG CTRLR BUCK PWM CM 10-MSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:2,500 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:500kHz 占空比:100% 电源电压:8.2 V ~ 30 V 降压:无 升压:无 回扫:是 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:是 工作温度:0°C ~ 70°C 封装/外壳:8-DIP(0.300",7.62mm) 包装:管件 产品目录页面:1316 (CN2011-ZH PDF)
ADP1873ARMZ-1.0-R7 功能描述:IC REG CTRLR BUCK PWM CM 10-MSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:2,500 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:500kHz 占空比:100% 电源电压:8.2 V ~ 30 V 降压:无 升压:无 回扫:是 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:是 工作温度:0°C ~ 70°C 封装/外壳:8-DIP(0.300",7.62mm) 包装:管件 产品目录页面:1316 (CN2011-ZH PDF)
ADP1873-BL1-EVZ 功能描述:EVAL BOARD FOR ADP1873 RoHS:是 类别:编程器,开发系统 >> 评估板 - DC/DC 与 AC/DC(离线)SMPS 系列:- 产品培训模块:Obsolescence Mitigation Program 标准包装:1 系列:True Shutdown™ 主要目的:DC/DC,步升 输出及类型:1,非隔离 功率 - 输出:- 输出电压:- 电流 - 输出:1A 输入电压:2.5 V ~ 5.5 V 稳压器拓扑结构:升压 频率 - 开关:3MHz 板类型:完全填充 已供物品:板 已用 IC / 零件:MAX8969