参数资料
型号: ADSP-BF514KSWZ-4
厂商: Analog Devices Inc
文件页数: 66/68页
文件大小: 0K
描述: IC DSP 16/32B 400MHZ LP 176LQFP
标准包装: 40
系列: Blackfin®
类型: 定点
接口: I²C,PPI,RSI,SPI,SPORT,UART/USART
时钟速率: 400MHz
非易失内存: 外部
芯片上RAM: 116kB
电压 - 输入/输出: 1.8V,2.5V,3.3V
电压 - 核心: 1.30V
工作温度: 0°C ~ 70°C
安装类型: 表面贴装
封装/外壳: 176-LQFP 裸露焊盘
供应商设备封装: 176-LQFP-EP(24x24)
包装: 托盘
ADSP-BF512/BF512F, BF514/BF514F, BF516/BF516F, BF518/BF518F
Rev. B
|
Page 7 of 68
|
January 2011
System Interrupt Controller (SIC)
The system interrupt controller provides the mapping and rout-
ing of events from the many peripheral interrupt sources to the
prioritized general-purpose interrupt inputs of the CEC.
Although the processors provide a default mapping, the user
can alter the mappings and priorities of interrupt events by
writing the appropriate values into the interrupt assignment
registers (SIC_IARx). See the ADSP-BF51x Blackfin Processor
Hardware Reference Manual “System Interrupts” chapter for the
inputs into the SIC and the default mappings into the CEC.
The SIC allows further control of event processing by providing
three pairs of 32-bit interrupt control and status registers. Each
register contains a bit corresponding to each of the peripheral
interrupt events. For more information, see the ADSP-BF51x
Blackfin Processor Hardware Reference Manual “System Inter-
rupts” chapter.
DMA CONTROLLERS
The ADSP-BF51x processors have multiple independent DMA
channels that support automated data transfers with minimal
overhead for the processor core. DMA transfers can occur
between the processor's internal memories and any of its DMA-
capable peripherals. Additionally, DMA transfers can be accom-
plished between any of the DMA-capable peripherals and
external devices connected to the external memory interfaces,
including the SDRAM controller and the asynchronous mem-
ory controller. DMA-capable peripherals include the Ethernet
MAC, RSI, SPORTs, SPIs, UARTs, and PPI. Each individual
DMA-capable peripheral has at least one dedicated DMA
channel.
The processors’ DMA controller supports both one-dimen-
sional (1-D) and two-dimensional (2-D) DMA transfers. DMA
transfer initialization can be implemented from registers or
from sets of parameters called descriptor blocks.
The 2-D DMA capability supports arbitrary row and column
sizes up to 64K elements by 64K elements, and arbitrary row
and column step sizes up to ±32K elements. Furthermore, the
column step size can be less than the row step size, allowing
implementation of interleaved data streams. This feature is
especially useful in video applications where data can be de-
interleaved on the fly.
Examples of DMA types supported by the DMA controller
include:
A single, linear buffer that stops upon completion
A circular, auto-refreshing buffer that interrupts on each
full or fractionally full buffer
1-D or 2-D DMA using a linked list of descriptors
2-D DMA using an array of descriptors, specifying only the
base DMA address within a common page
In addition to the dedicated peripheral DMA channels, there are
two memory DMA channels that transfer data between the vari-
ous memories of the processor system. This enables transfers of
blocks of data between any of the memories—including external
SDRAM, ROM, SRAM, and flash memory—with minimal pro-
cessor intervention. Memory DMA transfers can be controlled
by a very flexible descriptor-based methodology or by a stan-
dard register-based autobuffer mechanism.
The processors also have an external DMA controller capability
via dual external DMA request signals when used in conjunc-
tion with the external bus interface unit (EBIU). This
functionality can be used when a high speed interface is
required for external FIFOs and high bandwidth communica-
tions peripherals. It allows control of the number of data
transfers for memory DMA. The number of transfers per edge is
programmable. This feature can be programmed to allow mem-
ory DMA to have an increased priority on the external bus
relative to the core.
PROCESSOR PERIPHERALS
The ADSP-BF51x processors contain a rich set of peripherals
connected to the core via several high bandwidth buses, provid-
ing flexibility in system configuration as well as excellent overall
system performance (see Figure 1 on Page 4). The processors
contain dedicated network communication modules and high
speed serial and parallel ports, an interrupt controller for flexi-
ble management of interrupts from the on-chip peripherals or
external sources, and power management control functions to
tailor the performance and power characteristics of the proces-
sor and system to many application scenarios.
All of the peripherals, except for the general-purpose I/O, rotary
counter, TWI, three-phase PWM, real-time clock, and timers,
are supported by a flexible DMA structure. There are also sepa-
rate memory DMA channels dedicated to data transfers
between the processor's various memory spaces, including
external SDRAM and asynchronous memory. Multiple on-chip
buses provide enough bandwidth to keep the processor core
running along with activity on all of the on-chip and external
peripherals.
Real-Time Clock
The real-time clock (RTC) provides a robust set of digital watch
features, including current time, stopwatch, and alarm. The
RTC is clocked by a 32.768 kHz crystal external to the proces-
sors. The RTC peripheral has a dedicated power supply so that it
can remain powered up and clocked even when the rest of the
processor is in a low power state. The RTC provides several pro-
grammable interrupt options, including interrupt per second,
minute, hour, or day clock ticks, interrupt on programmable
stopwatch countdown, or interrupt at a programmed alarm
time.
The 32.768 kHz input clock frequency is divided down to a 1 Hz
signal by a prescaler. The counter function of the timer consists
of four counters: a 60-second counter, a 60-minute counter, a
24-hour counter, and an 32,768-day counter.
When enabled, the alarm function generates an interrupt when
the output of the timer matches the programmed value in the
alarm control register. There are two alarms: The first alarm is
for a time of day. The second alarm is for a day and time of
that day.
相关PDF资料
PDF描述
LSM2-T/6-W3-C CONV DC/DC 19.8W 6A 5V SMD
MAX7503MUA+T IC TEMP SENSOR DIGIT 8-UMAX
VI-22Y-CY-F2 CONVERTER MOD DC/DC 3.3V 33W
VI-22Y-CX-F4 CONVERTER MOD DC/DC 3.3V 49.5W
RSO-4809SZ CONV DC/DC 1W 18-72VIN 09VOUT
相关代理商/技术参数
参数描述
ADSP-BF514KSWZ-4F4 功能描述:IC DSP 16/32B 400MHZ LP 176LQFP RoHS:是 类别:集成电路 (IC) >> 嵌入式 - DSP(数字式信号处理器) 系列:Blackfin® 标准包装:2 系列:StarCore 类型:SC140 内核 接口:DSI,以太网,RS-232 时钟速率:400MHz 非易失内存:外部 芯片上RAM:1.436MB 电压 - 输入/输出:3.30V 电压 - 核心:1.20V 工作温度:-40°C ~ 105°C 安装类型:表面贴装 封装/外壳:431-BFBGA,FCBGA 供应商设备封装:431-FCPBGA(20x20) 包装:托盘
ADSP-BF516BBCZ-3 功能描述:IC DSP 16/32B 300MHZ 168CSPBGA RoHS:是 类别:集成电路 (IC) >> 嵌入式 - DSP(数字式信号处理器) 系列:Blackfin® 标准包装:2 系列:StarCore 类型:SC140 内核 接口:DSI,以太网,RS-232 时钟速率:400MHz 非易失内存:外部 芯片上RAM:1.436MB 电压 - 输入/输出:3.30V 电压 - 核心:1.20V 工作温度:-40°C ~ 105°C 安装类型:表面贴装 封装/外壳:431-BFBGA,FCBGA 供应商设备封装:431-FCPBGA(20x20) 包装:托盘
ADSP-BF516BBCZ-4 功能描述:IC DSP 16/32B 400MHZ 168CSPBGA RoHS:是 类别:集成电路 (IC) >> 嵌入式 - DSP(数字式信号处理器) 系列:Blackfin® 标准包装:2 系列:StarCore 类型:SC140 内核 接口:DSI,以太网,RS-232 时钟速率:400MHz 非易失内存:外部 芯片上RAM:1.436MB 电压 - 输入/输出:3.30V 电压 - 核心:1.20V 工作温度:-40°C ~ 105°C 安装类型:表面贴装 封装/外壳:431-BFBGA,FCBGA 供应商设备封装:431-FCPBGA(20x20) 包装:托盘
ADSP-BF516BBCZ-4F4 功能描述:IC DSP 16/32B 400MHZ 168CSPBGA RoHS:是 类别:集成电路 (IC) >> 嵌入式 - DSP(数字式信号处理器) 系列:Blackfin® 标准包装:2 系列:StarCore 类型:SC140 内核 接口:DSI,以太网,RS-232 时钟速率:400MHz 非易失内存:外部 芯片上RAM:1.436MB 电压 - 输入/输出:3.30V 电压 - 核心:1.20V 工作温度:-40°C ~ 105°C 安装类型:表面贴装 封装/外壳:431-BFBGA,FCBGA 供应商设备封装:431-FCPBGA(20x20) 包装:托盘
ADSP-BF516BSWZ-3 功能描述:IC DSP 16/32B 300MHZ LP 176LQFP RoHS:是 类别:集成电路 (IC) >> 嵌入式 - DSP(数字式信号处理器) 系列:Blackfin® 标准包装:40 系列:TMS320DM64x, DaVinci™ 类型:定点 接口:I²C,McASP,McBSP 时钟速率:400MHz 非易失内存:外部 芯片上RAM:160kB 电压 - 输入/输出:3.30V 电压 - 核心:1.20V 工作温度:0°C ~ 90°C 安装类型:表面贴装 封装/外壳:548-BBGA,FCBGA 供应商设备封装:548-FCBGA(27x27) 包装:托盘 配用:TMDSDMK642-0E-ND - DEVELPER KIT W/NTSC CAMERA296-23038-ND - DSP STARTER KIT FOR TMS320C6416296-23059-ND - FLASHBURN PORTING KIT296-23058-ND - EVAL MODULE FOR DM642TMDSDMK642-ND - DEVELOPER KIT W/NTSC CAMERA