参数资料
型号: AM29DL320GB120WMI
厂商: ADVANCED MICRO DEVICES INC
元件分类: PROM
英文描述: 32 Megabit (4 M x 8-Bit/2 M x 16-Bit) CMOS 3.0 Volt-only, Simultaneous Operation Flash Memory
中文描述: 2M X 16 FLASH 3V PROM, 120 ns, PBGA48
封装: 6 X 12 MM, 0.80 MM PITCH, FBGA-48
文件页数: 18/55页
文件大小: 1230K
代理商: AM29DL320GB120WMI
July 31, 2002
Am29DL320G
25
ADV ANC E
INFO RMAT ION
Any commands written to the device during the Em-
bedded Program Algorithm are ignored. Note that a
hardware reset immediately terminates the program
operation. The program command sequence should
be reinitiated once that bank has returned to the read
mode, to ensure data integrity.
Programming is allowed in any sequence and across
sector boundaries. A bit cannot be programmed
from “0” back to a “1.” Attempting to do so may
cause that bank to set DQ5 = 1, or cause the DQ7 and
DQ6 status bits to indicate the operation was success-
ful. However, a succeeding read will show that the
data is still “0.” Only erase operations can convert a
“0” to a “1.”
Unlock Bypass Command Sequence
The unlock bypass feature allows the system to pro-
gram bytes or words to a bank faster than using the
standard program command sequence. The unlock
bypass command sequence is initiated by first writing
two unlock cycles. This is followed by a third write
cycle containing the unlock bypass command, 20h.
That bank then enters the unlock bypass mode. A
two-cycle unlock bypass program command sequence
is all that is required to program in this mode. The first
cycle in this sequence contains the unlock bypass pro-
gram command, A0h; the second cycle contains the
program address and data. Additional data is pro-
grammed in the same manner. This mode dispenses
with the initial two unlock cycles required in the stan-
dard program command sequence, resulting in faster
total programming time. Table 13 shows the require-
ments for the command sequence.
During the unlock bypass mode, only the Unlock By-
pass Program and Unlock Bypass Reset commands
are valid. To exit the unlock bypass mode, the system
must issue the two-cycle unlock bypass reset com-
mand sequence. The first cycle must contain the bank
address and the data 90h. The second cycle need
only contain the data 00h. The bank then returns to
the read mode.
The device offers accelerated program operations
through the WP#/ACC pin. When the system asserts
V
HH on the WP#/ACC pin, the device automatically en-
ters the Unlock Bypass mode. The system may then
write the two-cycle Unlock Bypass program command
sequence. The device uses the higher voltage on the
WP#/ACC pin to accelerate the operation. Note that
the WP#/ACC pin must not be at V
HH any operation
other than accelerated programming, or device dam-
age may result. In addition, the WP#/ACC pin must not
be left floating or unconnected; inconsistent behavior
of the device may result.
Figure 3 illustrates the algorithm for the program oper-
ation. Refer to the Erase and Program Operations
table in the AC Characteristics section for parameters,
and Figure 17 for timing diagrams.
Figure 3.
Program Operation
Chip Erase Command Sequence
Chip erase is a six bus cycle operation. The chip erase
command sequence is initiated by writing two unlock
cycles, followed by a set-up command. Two additional
unlock write cycles are then followed by the chip erase
command, which in turn invokes the Embedded Erase
algorithm. The device does not require the system to
preprogram prior to erase. The Embedded Erase algo-
rithm automatically preprograms and verifies the entire
memory for an all zero data pattern prior to electrical
erase. The system is not required to provide any con-
trols or timings during these operations. Table 13
shows the address and data requirements for the chip
erase command sequence.
When the Embedded Erase algorithm is complete,
that bank returns to the read mode and addresses are
no longer latched. The system can determine the sta-
tus of the erase operation by using DQ7, DQ6, DQ2,
START
Write Program
Command Sequence
Data Poll
from System
Verify Data?
No
Yes
Last Address?
No
Yes
Programming
Completed
Increment Address
Embedded
Program
algorithm
in progress
Note: See Table 13 for program command sequence.
相关PDF资料
PDF描述
AM29DL320GB90WMIN 32 Megabit (4 M x 8-Bit/2 M x 16-Bit) CMOS 3.0 Volt-only, Simultaneous Operation Flash Memory
AM29DL320GT120EI 32 Megabit (4 M x 8-Bit/2 M x 16-Bit) CMOS 3.0 Volt-only, Simultaneous Operation Flash Memory
AM29DL320GT120EIN 32 Megabit (4 M x 8-Bit/2 M x 16-Bit) CMOS 3.0 Volt-only, Simultaneous Operation Flash Memory
AM29DL320GT120WDI 32 Megabit (4 M x 8-Bit/2 M x 16-Bit) CMOS 3.0 Volt-only, Simultaneous Operation Flash Memory
AM29DL320GT120WDIN 32 Megabit (4 M x 8-Bit/2 M x 16-Bit) CMOS 3.0 Volt-only, Simultaneous Operation Flash Memory
相关代理商/技术参数
参数描述
AM29DL320GB70EI 制造商:Advanced Micro Devices 功能描述:Flash Mem Parallel 3.3V 32M-Bit 4M x 8/2M x 16 70ns 48-Pin TSOP
AM29DL322DB7REIT 制造商:AMD 功能描述:New
AM29DL322DB-90WDIT 制造商:Spansion 功能描述:FLASH PARALLEL 3V/3.3V 32MBIT 4MX8/2MX16 90NS 63FBGA - Tape and Reel
AM29DL322DT-90EI-T 制造商:Advanced Micro Devices 功能描述:
AM29DL322GB-90EI 制造商:Advanced Micro Devices 功能描述:2M X 16 FLASH 3V PROM, 90 ns, 48 Pin Plastic SMT