参数资料
型号: AM29F160DT90FC
厂商: ADVANCED MICRO DEVICES INC
元件分类: PROM
英文描述: 16 Megabit (2 M x 8-Bit/1 M x 16-Bit) CMOS 5.0 Volt-only, Boot Sector Flash Memory
中文描述: 1M X 16 FLASH 5V PROM, 90 ns, PDSO48
封装: REVERSE, MO-142DD, TSOP-48
文件页数: 21/46页
文件大小: 914K
代理商: AM29F160DT90FC
20
Am29F160D
Note:
See the appropriate Command Definitions table for
program command sequence.
Figure 3.
Program Operation
Chip Erase Command Sequence
Chip erase is a six-bus-cycle operation. The chip erase
command sequence is initiated by writing two unlock
cycles, followed by a set-up command. Two additional
unlock write cycles are then followed by the chip erase
command, which in turn invokes the Embedded Erase
algorithm. The device does not require the system to
preprogram prior to erase. The Embedded Erase algo-
rithm automatically preprograms and verifies the entire
memory for an all zero data pattern prior to electrical
erase. The system is not required to provide any con-
trols or timings during these operations. The Command
Definitions table shows the address and data require-
ments for the chip erase command sequence.
Any commands written to the chip during the Embed-
ded Erase algorithm are ignored. Note that a
hardware
reset
during the chip erase operation immediately ter-
minates the operation. The Chip Erase command se-
quence should be reinitiated once the device has
returned to reading array data, to ensure data integrity.
The system can determine the status of the erase
operation by using DQ7, DQ6, DQ2, or RY/BY#. See
“Write Operation Status” for information on these
status bits. When the Embedded Erase algorithm is
complete, the device returns to reading array data
and addresses are no longer latched.
Figure 4 illustrates the algorithm for the erase opera-
tion. See the Erase/Program Operations tables in “AC
Characteristics” for parameters, and to the Chip/Sector
Erase Operation Timings for timing waveforms.
Sector Erase Command Sequence
Sector erase is a six bus cycle operation. The sector
erase command sequence is initiated by writing two un-
lock cycles, followed by a set-up command. Two addi-
tional unlock write cycles are then followed by the
address of the sector to be erased, and the sector
erase command. The Command Definitions table
shows the address and data requirements for the sec-
tor erase command sequence.
The device does
not
require the system to preprogram
the memory prior to erase. The Embedded Erase algo-
rithm automatically programs and verifies the sector for
an all zero data pattern prior to electrical erase. The
system is not required to provide any controls or tim-
ings during these operations.
After the command sequence is written, a sector erase
time-out of 50 μs begins. During the time-out period,
additional sector addresses and sector erase com-
mands may be written. Loading the sector erase buffer
may be done in any sequence, and the number of sec-
tors may be from one sector to all sectors. The time be-
tween these additional cycles must be less than 50 μs,
otherwise the last address and command might not be
accepted, and erasure may begin. It is recommended
that processor interrupts be disabled during this time to
ensure all commands are accepted. The interrupts can
be re-enabled after the last Sector Erase command is
written. If the time between additional sector erase
commands can be assumed to be less than 50 μs, the
system need not monitor DQ3.
Any command other
than Sector Erase or Erase Suspend during the
time-out period resets the device to reading array
data.
The system must rewrite the command sequence
and any additional sector addresses and commands.
The system can monitor DQ3 to determine if the sector
erase timer has timed out. (See the “DQ3: Sector Erase
Timer” section.) The time-out begins from the rising
edge of the final WE# pulse in the command sequence.
Once the sector erase operation has begun, only the
Erase Suspend command is valid. All other commands
are ignored. Note that a
hardware reset
during the
sector erase operation immediately terminates the op-
eration. The Sector Erase command sequence should
START
Write Program
Command Sequence
Data Poll
from System
Verify Data
No
Yes
Last Address
No
Yes
Programming
Completed
Increment Address
Embedded
Program
algorithm
in progress
相关PDF资料
PDF描述
AM29F160DT90FI 16 Megabit (2 M x 8-Bit/1 M x 16-Bit) CMOS 5.0 Volt-only, Boot Sector Flash Memory
AM29F160DB90EC 16 Megabit (2 M x 8-Bit/1 M x 16-Bit) CMOS 5.0 Volt-only, Boot Sector Flash Memory
AM29F160DB90EI 16 Megabit (2 M x 8-Bit/1 M x 16-Bit) CMOS 5.0 Volt-only, Boot Sector Flash Memory
AM29F160DB90FC Switch Mode Power Supply; Series:SC40; Output Voltage:5V; Output Power Max:40W; Output Current:4A; Number of Outputs:3; Output Current 2:1A; Output Current 3:0.5A
AM29F160DB90FI 16 Megabit (2 M x 8-Bit/1 M x 16-Bit) CMOS 5.0 Volt-only, Boot Sector Flash Memory
相关代理商/技术参数
参数描述
AM29F200AB-120DPE1 制造商:Spansion 功能描述:5V 2M FLASH KNOWN GOOD DIE W/ BOTTOM BOOT (EXTENDED TEMP) - Gel-pak, waffle pack, wafer, diced wafer on film
AM29F200AB-90SC 制造商:Advanced Micro Devices 功能描述:NOR Flash, 128K x 16, 44 Pin, Plastic, SOP
AM29F200AB90SI 制造商:AMD 功能描述:NEW
AM29F200AT-120EC 制造商:Advanced Micro Devices 功能描述:NOR Flash Parallel 5V 2Mbit 256K/128K x 8bit/16bit 120ns 48-Pin TSOP
AM29F200AT55EC 制造商:Advanced Micro Devices 功能描述: