参数资料
型号: AT89C52-16PA
厂商: ATMEL CORP
元件分类: 微控制器/微处理器
英文描述: Hex Inverter 14-TSSOP -40 to 125
中文描述: 8-BIT, FLASH, 16 MHz, MICROCONTROLLER, PDIP40
封装: 0.600 INCH, PLASTIC, DIP-40
文件页数: 5/22页
文件大小: 181K
代理商: AT89C52-16PA
AT89C52
4-65
Special Function Registers
A map of the on-chip memory area called the Special Func-
tion Register (SFR) space is shown in Table 1.
Note that not all of the addresses are occupied, and unoc-
cupied addresses may not be implemented on the chip.
Read accesses to these addresses will in general return
random data, and write accesses will have an indetermi-
nate effect.
User software should not write 1s to these unlisted loca-
tions, since they may be used in future products to invoke
new features. In that case, the reset or inactive values of
the new bits will always be 0.
Timer 2 Registers:
Control and status bits are contained
in registers T2CON (shown in Table 2) and T2MOD (shown
in Table 4) for Timer 2. The register pair (RCAP2H,
RCAP2L) are the Capture/Reload registers for Timer 2 in
16-bit capture mode or 16-bit auto-reload mode.
Interrupt Registers:
The individual interrupt enable bits
are in the IE register. Two priorities can be set for each of
the six interrupt sources in the IP register.
Table 2.
T2CON—Timer/Counter 2 Control Register
Data Memory
The AT89C52 implements 256 bytes of on-chip RAM. The
upper 128 bytes occupy a parallel address space to the
Special Function Registers. That means the upper 128
bytes have the same addresses as the SFR space but are
physically separate from SFR space.
When an instruction accesses an internal location above
address 7FH, the address mode used in the instruction
specifies whether the CPU accesses the upper 128 bytes
of RAM or the SFR space. Instructions that use direct
addressing access SFR space.
For example, the following direct addressing instruction
accesses the SFR at location 0A0H (which is P2).
MOV 0A0H, #data
Instructions that use indirect addressing access the upper
128 bytes of RAM. For example, the following indirect
addressing instruction, where R0 contains 0A0H, accesses
the data byte at address 0A0H, rather than P2 (whose
address is 0A0H).
MOV @R0, #data
Note that stack operations are examples of indirect
addressing, so the upper 128 bytes of data RAM are avail-
able as stack space.
T2CON Address = 0C8H
Reset Value = 0000 0000B
Bit Addressable
Bit
TF2
EXF2
RCLK
TCLK
EXEN2
TR2
C/T2
CP/RL2
7
6
5
4
3
2
1
0
Symbol
Function
TF2
Timer 2 overflow flag set by a Timer 2 overflow and must be cleared by software. TF2 will not be set when either
RCLK = 1 or TCLK = 1.
EXF2
Timer 2 external flag set when either a capture or reload is caused by a negative transition on T2EX and EXEN2 =
1. When Timer 2 interrupt is enabled, EXF2 = 1 will cause the CPU to vector to the Timer 2 interrupt routine. EXF2
must be cleared by software. EXF2 does not cause an interrupt in up/down counter mode (DCEN = 1).
RCLK
Receive clock enable. When set, causes the serial port to use Timer 2 overflow pulses for its receive clock in serial
port Modes 1 and 3. RCLK = 0 causes Timer 1 overflow to be used for the receive clock.
TCLK
Transmit clock enable. When set, causes the serial port to use Timer 2 overflow pulses for its transmit clock in serial
port Modes 1 and 3. TCLK = 0 causes Timer 1 overflows to be used for the transmit clock.
EXEN2
Timer 2 external enable. When set, allows a capture or reload to occur as a result of a negative transition on T2EX
if Timer 2 is not being used to clock the serial port. EXEN2 = 0 causes Timer 2 to ignore events at T2EX.
TR2
Start/Stop control for Timer 2. TR2 = 1 starts the timer.
C/T2
Timer or counter select for Timer 2. C/T2 = 0 for timer function. C/T2 = 1 for external event counter (falling edge
triggered).
CP/RL2
Capture/Reload select. CP/RL2 = 1 causes captures to occur on negative transitions at T2EX if EXEN2 = 1. CP/RL2
= 0 causes automatic reloads to occur when Timer 2 overflows or negative transitions occur at T2EX when EXEN2
= 1. When either RCLK or TCLK = 1, this bit is ignored and the timer is forced to auto-reload on Timer 2 overflow.
相关PDF资料
PDF描述
AT89C52-16PC Hex Inverter 14-TSSOP -40 to 125
AT89C52-16PI 8-Bit Microcontroller with 8K Bytes Flash
AT89C52-16QC Hex Inverter 14-VQFN -40 to 125
AT89C52-16QI 8-Bit Microcontroller with 8K Bytes Flash
AT89C52-20AC 8-Bit Microcontroller with 8K Bytes Flash
相关代理商/技术参数
参数描述
AT89C52-16PC 功能描述:8位微控制器 -MCU Microcontroller RoHS:否 制造商:Silicon Labs 核心:8051 处理器系列:C8051F39x 数据总线宽度:8 bit 最大时钟频率:50 MHz 程序存储器大小:16 KB 数据 RAM 大小:1 KB 片上 ADC:Yes 工作电源电压:1.8 V to 3.6 V 工作温度范围:- 40 C to + 105 C 封装 / 箱体:QFN-20 安装风格:SMD/SMT
AT89C52-16PI 功能描述:8位微控制器 -MCU 80C31 w/8k RoHS:否 制造商:Silicon Labs 核心:8051 处理器系列:C8051F39x 数据总线宽度:8 bit 最大时钟频率:50 MHz 程序存储器大小:16 KB 数据 RAM 大小:1 KB 片上 ADC:Yes 工作电源电压:1.8 V to 3.6 V 工作温度范围:- 40 C to + 105 C 封装 / 箱体:QFN-20 安装风格:SMD/SMT
AT89C52-16QA 制造商:ATMEL 制造商全称:ATMEL Corporation 功能描述:8-Bit Microcontroller with 8K Bytes Flash
AT89C52-16QC 制造商:ATMEL 制造商全称:ATMEL Corporation 功能描述:8-bit Microcontroller with 8K Bytes Flash
AT89C52-16QC-5 功能描述:8位微控制器 -MCU Microcontroller RoHS:否 制造商:Silicon Labs 核心:8051 处理器系列:C8051F39x 数据总线宽度:8 bit 最大时钟频率:50 MHz 程序存储器大小:16 KB 数据 RAM 大小:1 KB 片上 ADC:Yes 工作电源电压:1.8 V to 3.6 V 工作温度范围:- 40 C to + 105 C 封装 / 箱体:QFN-20 安装风格:SMD/SMT