参数资料
型号: DS18B20Z+T&R
厂商: Maxim Integrated
文件页数: 5/22页
文件大小: 528K
描述: IC THERM MICROLAN PROG-RES 8SOIC
产品培训模块: Lead (SnPb) Finish for COTS
Obsolescence Mitigation Program
标准包装: 2,500
功能: 温度计,恒温计
传感器类型: 内部
感应温度: -55°C ~ 125°C
精确度: ±2°C(最小值)
拓扑: 寄存器库,变签式暂存器
输出类型: 1-Wire?
输出警报:
输出风扇:
电源电压: 3 V ~ 5.5 V
工作温度: -55°C ~ 125°C
安装类型: 表面贴装
封装/外壳: 8-SOIC(0.154",3.90mm 宽)
供应商设备封装: 8-SOIC
包装: 带卷 (TR)
DS18B20
 
5 of 22 
The master device can check the alarm flag status of all DS18B20s on the bus by issuing an Alarm Search
[ECh] command. Any DS18B20s with a set alarm flag will respond to the command, so the master can
determine exactly which DS18B20s have experienced an alarm condition. If an alarm condition exists
and the T
H
 or T
L
 settings have changed, another temperature conversion should be done to validate the
alarm condition.
 
POWERING THE DS18B20
The DS18B20 can be powered by an external supply on the V
DD
 pin, or it can operate in parasite power
mode, which allows the DS18B20 to function without a local external supply. Parasite power is very
useful for applications that require remote temperature sensing or that are very space constrained.
Figure 1 shows the DS18B20s parasite-power control circuitry, which steals power from the 1-Wire
bus via the DQ pin when the bus is high. The stolen charge powers the DS18B20 while the bus is high,
and some of the charge is stored on the parasite power capacitor (C
PP
) to provide power when the bus is
low. When the DS18B20 is used in parasite power mode, the V
DD
 pin must be connected to ground.
 
In parasite power mode, the 1-Wire bus and C
PP
 can provide sufficient current to the DS18B20 for most
operations as long as the specified timing and voltage requirements are met (see the  DC  Electrical 
Characteristics  and  AC Electrical Characteristics).  However,  when  the  DS18B20  is  performing 
temperature conversions or copying data from the scratchpad memory to EEPROM, the operating current
can be as high as 1.5mA. This current can cause an unacceptable voltage drop across the weak 1-Wire
pullup resistor and is more current than can be supplied by C
PP
. To assure that the DS18B20 has sufficient
supply current, it is necessary to provide a strong pullup on the 1-Wire bus whenever temperature
conversions are taking place or data is being copied from the scratchpad to EEPROM. This can be
accomplished by using a MOSFET to pull the bus directly to the rail as shown in Figure 4. The 1-Wire
bus must be switched to the strong pullup within 10祍 (max) after a Convert T [44h] or Copy Scratchpad
[48h] command is issued, and the bus must be held high by the pullup for the duration of the conversion
(t
CONV
) or data transfer (t
WR
 = 10ms). No other activity can take place on the 1-Wire bus while the pullup
is enabled.
 
The DS18B20 can also be powered by the conventional method of connecting an external power supply
to the V
DD
 pin, as shown in Figure 5. The advantage of this method is that the MOSFET pullup is not
required, and the 1-Wire bus is free to carry other traffic during the temperature conversion time.
 
The use of parasite power is not recommended for temperatures above +100癈 since the DS18B20 may
not be able to sustain communications due to the higher leakage currents that can exist at these
temperatures. For applications in which such temperatures are likely, it is strongly recommended that the
DS18B20 be powered by an external power supply.
 
In some situations the bus master may not know whether the DS18B20s on the bus are parasite powered
or powered by external supplies. The master needs this information to determine if the strong bus pullup
should be used during temperature conversions. To get this information, the master can issue a Skip ROM
[CCh] command followed by a Read Power Supply [B4h] command followed by a read time slot.
During the read time slot, parasite powered DS18B20s will pull the bus low, and externally powered
DS18B20s will let the bus remain high. If the bus is pulled low, the master knows that it must supply the
strong pullup on the 1-Wire bus during temperature conversions.
 
相关PDF资料
PDF描述
1N5402RLG DIODE STD REC 3A 200V DO201AD
VJ1206A100KBEAT4X CAP CER 10PF 500V 10% NP0 1206
EBC19DRTI-S13 CONN EDGECARD 38POS .100 EXTEND
AIMC-0201-1N5S-T INDUCTOR MULTILAYER 1.5NH 0201
IR2521DSTRPBF IC BALLAST CTLR ADAPTIVE 8-SOIC
相关代理商/技术参数
参数描述
DS18B20Z-W 制造商:Maxim Integrated Products 功能描述:
DS18S20 功能描述:板上安装温度传感器 RoHS:否 制造商:Omron Electronics 输出类型:Digital 配置: 准确性:+/- 1.5 C, +/- 3 C 温度阈值: 数字输出 - 总线接口:2-Wire, I2C, SMBus 电源电压-最大:5.5 V 电源电压-最小:4.5 V 最大工作温度:+ 50 C 最小工作温度:0 C 关闭: 安装风格: 封装 / 箱体: 设备功能:Temperature and Humidity Sensor
DS18S20/T&R 制造商:Rochester Electronics LLC 功能描述: 制造商:Maxim Integrated Products 功能描述:IC THERM MICROLAN HI PREC TO-92
DS18S20/T&R 功能描述:板上安装温度传感器 RoHS:否 制造商:Omron Electronics 输出类型:Digital 配置: 准确性:+/- 1.5 C, +/- 3 C 温度阈值: 数字输出 - 总线接口:2-Wire, I2C, SMBus 电源电压-最大:5.5 V 电源电压-最小:4.5 V 最大工作温度:+ 50 C 最小工作温度:0 C 关闭: 安装风格: 封装 / 箱体: 设备功能:Temperature and Humidity Sensor
DS18S20+ 功能描述:板上安装温度传感器 Prgmble Resolution 1-Wire Parasite Pwr RoHS:否 制造商:Omron Electronics 输出类型:Digital 配置: 准确性:+/- 1.5 C, +/- 3 C 温度阈值: 数字输出 - 总线接口:2-Wire, I2C, SMBus 电源电压-最大:5.5 V 电源电压-最小:4.5 V 最大工作温度:+ 50 C 最小工作温度:0 C 关闭: 安装风格: 封装 / 箱体: 设备功能:Temperature and Humidity Sensor