参数资料
型号: DS3231M+TRL
厂商: Maxim Integrated Products
文件页数: 9/20页
文件大小: 0K
描述: IC REAL TIME CLOCK I2C 16SOIC
产品培训模块: Lead (SnPb) Finish for COTS
Obsolescence Mitigation Program
标准包装: 1,000
类型: 时钟/日历
特点: 警报器,闰年,方波输出
时间格式: HH:MM:SS(12/24 小时)
数据格式: YY-MM-DD-dd
接口: I²C,2 线串口
电源电压: 2.3 V ~ 5.5 V
电压 - 电源,电池: 2.3 V ~ 5.5 V
工作温度: -40°C ~ 85°C
安装类型: 表面贴装
封装/外壳: 16-SOIC(0.295",7.50mm 宽)
供应商设备封装: 16-SOIC W
包装: 带卷 (TR)
其它名称: 90-3231M+NTR
±5ppm, I2C Real-Time Clock
17
Maxim Integrated
DS3231M
Bit Write: Transitions of SDA must occur during
the low state of SCL. The data on SDA must remain
valid and unchanged during the entire high pulse of
SCL plus the setup and hold time requirements (see
Figure 1). Data is shifted into the device during the
rising edge of the SCL.
Bit Read: At the end of a write operation, the master
must release the SDA bus line for the proper amount
of setup time (see Figure 1) before the next rising
edge of SCL during a bit read. The device shifts out
each bit of data on SDA at the falling edge of the
previous SCL pulse and the data bit is valid at the
rising edge of the current SCL pulse. Remember that
the master generates all SCL clock pulses including
when it is reading bits from the slave.
Acknowledge (ACK and NACK): An acknowledge
(ACK) or not acknowledge (NACK) is always the
ninth bit transmitted during a byte transfer. The
device receiving data (the master during a read or
the slave during a write operation) performs an ACK
by transmitting a 0 during the ninth bit. A device per-
forms a NACK by transmitting a 1 during the ninth bit.
Timing for the ACK and NACK is identical to all other
bit writes. An ACK is the acknowledgment that the
device is properly receiving data. A NACK is used to
terminate a read sequence or as an indication that the
device is not receiving data.
Byte Write: A byte write consists of 8 bits of informa-
tion transferred from the master to the slave (most
significant bit first) plus a 1-bit acknowledgment from
the slave to the master. The 8 bits transmitted by the
master are done according to the bit write definition
and the acknowledgment is read using the bit read
definition.
Byte Read: A byte read is an 8-bit information transfer
from the slave to the master plus a 1-bit ACK or NACK
from the master to the slave. The 8 bits of information
that are transferred (most significant bit first) from the
slave to the master are read by the master using the
bit read definition, and the master transmits an ACK
using the bit write definition to receive additional data
bytes. The master must NACK the last byte read to
terminate communication so the slave returns control
of SDA to the master.
Slave Address Byte: Each slave on the I2C bus
responds to a slave address byte sent immediately
following a START condition. The slave address byte
contains the slave address in the most significant 7
bits and the R/W bit in the least significant bit. The
device’s slave address is D0h and cannot be modi-
fied by the user. When the R/W bit is 0 (such as in
D0h), the master is indicating it writes data to the
slave. If R/W = 1 (D1h in this case), the master is
indicating it wants to read from the slave. If an incor-
rect slave address is written, the device assumes the
master is communicating with another I2C device
and ignore the communication until the next START
condition is sent.
Memory Address: During an I2C write operation, the
master must transmit a memory address to identify
the memory location where the slave is to store the
data. The memory address is always the second byte
transmitted during a write operation following the
slave address byte.
I2C Communication
See Figure 9 for an I2C communication example.
Writing a Single Byte to a Slave: The master must
generate a START condition, write the slave address
byte (R/W = 0), write the memory address, write
the byte of data, and generate a STOP condition.
Remember the master must read the slave’s acknowl-
edgment during all byte write operations.
Writing Multiple Bytes to a Slave: To write multiple
bytes to a slave, the master generates a START con-
dition, writes the slave address byte (R/W = 0), writes
the starting memory address, writes multiple data
bytes, and generates a STOP condition.
Reading a Single Byte from a Slave: Unlike the write
operation that uses the specified memory address
byte to define where the data is to be written, the read
operation occurs at the present value of the memory
address counter. To read a single byte from the slave,
the master generates a START condition, writes the
slave address byte with R/W = 1, reads the data byte
with a NACK to indicate the end of the transfer, and
generates a STOP condition. However, since requir-
ing the master to keep track of the memory address
counter is impractical, use the method for manipulat-
ing the address counter for reads.
Manipulating the Address Counter for Reads: A
dummy write cycle can be used to force the address
counter to a particular value. To do this the mas-
ter generates a START condition, writes the slave
address byte (R/W = 0), writes the memory address
where it desires to read, generates a repeated START
condition, writes the slave address byte (R/W = 1),
相关PDF资料
PDF描述
DS3231MZ+TRL IC RTC I2C 8SOIC
VI-24W-MX-B1 CONVERTER MOD DC/DC 5.5V 75W
VI-BNR-IU-S CONVERTER MOD DC/DC 7.5V 200W
DS12885S+T&R IC RTC W/RAM 128 BYTE 24-SOIC
VE-BNH-MW-B1 CONVERTER MOD DC/DC 52V 100W
相关代理商/技术参数
参数描述
DS3231MZ 制造商:MAXIM 制造商全称:Maxim Integrated Products 功能描述:5ppm, I2C Real-Time Clock Battery Backup for Continuous Timekeeping
DS3231MZ/V+ 功能描述:实时时钟 TRC/TCMO MEMS 8L RoHS:否 制造商:Microchip Technology 功能:Clock, Calendar. Alarm RTC 总线接口:I2C 日期格式:DW:DM:M:Y 时间格式:HH:MM:SS RTC 存储容量:64 B 电源电压-最大:5.5 V 电源电压-最小:1.8 V 最大工作温度:+ 85 C 最小工作温度: 安装风格:Through Hole 封装 / 箱体:PDIP-8 封装:Tube
DS3231MZ/V+T 功能描述:实时时钟 TRC/TCMO MEMS 8L RoHS:否 制造商:Microchip Technology 功能:Clock, Calendar. Alarm RTC 总线接口:I2C 日期格式:DW:DM:M:Y 时间格式:HH:MM:SS RTC 存储容量:64 B 电源电压-最大:5.5 V 电源电压-最小:1.8 V 最大工作温度:+ 85 C 最小工作温度: 安装风格:Through Hole 封装 / 箱体:PDIP-8 封装:Tube
DS3231MZ+ 功能描述:实时时钟 5+/-ppm RTC RoHS:否 制造商:Microchip Technology 功能:Clock, Calendar. Alarm RTC 总线接口:I2C 日期格式:DW:DM:M:Y 时间格式:HH:MM:SS RTC 存储容量:64 B 电源电压-最大:5.5 V 电源电压-最小:1.8 V 最大工作温度:+ 85 C 最小工作温度: 安装风格:Through Hole 封装 / 箱体:PDIP-8 封装:Tube
DS3231MZ+TRL 功能描述:实时时钟 5+/-ppm RTC RoHS:否 制造商:Microchip Technology 功能:Clock, Calendar. Alarm RTC 总线接口:I2C 日期格式:DW:DM:M:Y 时间格式:HH:MM:SS RTC 存储容量:64 B 电源电压-最大:5.5 V 电源电压-最小:1.8 V 最大工作温度:+ 85 C 最小工作温度: 安装风格:Through Hole 封装 / 箱体:PDIP-8 封装:Tube