参数资料
型号: EVAL-AD5362EBZ
厂商: Analog Devices Inc
文件页数: 13/29页
文件大小: 0K
描述: BOARD EVAL FOR AD5362
产品培训模块: DAC Architectures
标准包装: 1
DAC 的数量: 8
位数: 16
采样率(每秒): 540k
数据接口: 串行
设置时间: 20µs
DAC 型: 电压
工作温度: -40°C ~ 85°C
已供物品: 板,CD
已用 IC / 零件: AD5362
相关产品: AD5362BSTZ-REEL-ND - IC DAC 16BIT 8CH SERIAL 52-LQFP
AD5362BSTZ-ND - IC DAC 16BIT 8CH SERIAL 52-LQFP
AD5362BCPZ-REEL7-ND - IC DAC 16BIT 8CH SERIAL 56-LFCSP
AD5362BCPZ-ND - IC DAC 16BIT 8CH SERIAL 56-LFCSP
AD5362/AD5363
Rev. A | Page 19 of 28
Reference Selection Example
If
Nominal output range = 20 V (10 V to +10 V)
Offset error = ±100 mV
Gain error = ±3%, and
SIGGND = AGND = 0 V
Then
Gain error = ±3%
=> Maximum positive gain error = 3%
=> Output range including gain error = 20 + 0.03(20) = 20.6 V
Offset error = ±100 mV
=> Maximum offset error span = 2(100 mV) = 0.2 V
=> Output range including gain error and offset error =
20.6 V + 0.2 V = 20.8 V
VREF calculation
Actual output range = 20.6 V, that is, 10.3 V to +10.3 V
(centered);
VREF = (10.3 V + 10.3 V)/4 = 5.15 V
If the solution yields an inconvenient reference level, the user
can adopt one of the following approaches:
Use a resistor divider to divide down a convenient, higher
reference level to the required level.
Select a convenient reference level above VREF and modify
the gain and offset registers to digitally downsize the reference.
In this way, the user can use almost any convenient reference
level but can reduce the performance by overcompaction of
the transfer function.
Use a combination of these two approaches.
CALIBRATION
The user can perform a system calibration on the AD5362/
AD5363 to reduce gain and offset errors to below 1 LSB. This
reduction is achieved by calculating new values for the M and
C registers and reprogramming them.
The M and C registers should not be programmed until both
the zero-scale and full-scale errors are calculated.
Reducing Zero-Scale Error
Zero-scale error can be reduced as follows:
1.
Set the output to the lowest possible value.
2.
Measure the actual output voltage and compare it to the
required value. This gives the zero-scale error.
3.
Calculate the number of LSBs equivalent to the error and
add this number to the default value of the C register. Note
that only negative zero-scale error can be reduced.
Reducing Full-Scale Error
Full-scale error can be reduced as follows:
1.
Measure the zero-scale error.
2.
Set the output to the highest possible value.
3.
Measure the actual output voltage and compare it to the
required value. Add this error to the zero-scale error. This
is the span error, which includes the full-scale error.
4.
Calculate the number of LSBs equivalent to the span error
and subtract this number from the default value of the M
register. Note that only positive full-scale error can be
reduced.
AD5362 Calibration Example
This example assumes that a 10 V to +10 V output is required.
The DAC output is set to 10 V but measured at 10.03 V. This
gives a zero-scale error of 30 mV.
1 LSB = 20 V/65,536 = 305.176 μV
30 mV = 98 LSBs
The full-scale error can now be calculated. The output is set to
10 V and a value of 10.02 V is measured. This gives a full-scale
error of +20 mV and a span error of +20 mV – (–30 mV) =
+50 mV.
50 mV = 164 LSBs
The errors can now be removed as follows:
1.
Add 98 LSBs to the default C register value:
(32,768 + 98) = 32,866
2.
Subtract 164 LSBs from the default M register value:
(65,535 164) = 65,371
3.
Program the M register to 65,371; program the C register
to 32,866.
ADDITIONAL CALIBRATION
The techniques described in the previous section are usually
enough to reduce the zero-scale and full-scale errors in most
applications. However, there are limitations whereby the errors
may not be sufficiently reduced. For example, the offset (C)
register can only be used to reduce the offset caused by the
negative zero-scale error. A positive offset cannot be reduced.
Likewise, if the maximum voltage is below the ideal value, that
is, a negative full-scale error, the gain (M) register cannot be
used to increase the gain to compensate for the error.
These limitations can be overcome by increasing the reference
value. With a 2.5 V reference, a 10 V span is achieved. The ideal
voltage range, for the AD5362 or the AD5363, is 5 V to +5 V.
Using a +2.6 V reference increases the range to 5.2 V to +5.2
V.
Clearly, in this case, the offset and gain errors are
insignificant,
and the M and C registers can be used to raise the
negative
voltage to 5 V and then reduce the maximum voltage
to +5 V
to give the most accurate values possible.
相关PDF资料
PDF描述
GCA18DTKT CONN EDGECARD 36POS DIP .125 SLD
VI-BTX-EY CONVERTER MOD DC/DC 5.2V 50W
VI-BTV-EY CONVERTER MOD DC/DC 5.8V 50W
DC1444A-B BOARD SAR ADC LTC2305
HBM08DRYF CONN EDGECARD 16POS DIP .156 SLD
相关代理商/技术参数
参数描述
EVAL-AD5363EBZ 功能描述:BOARD EVALUATION FOR AD5363 RoHS:是 类别:编程器,开发系统 >> 评估板 - 数模转换器 (DAC) 系列:- 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:1 系列:- DAC 的数量:4 位数:12 采样率(每秒):- 数据接口:串行,SPI? 设置时间:3µs DAC 型:电流/电压 工作温度:-40°C ~ 85°C 已供物品:板 已用 IC / 零件:MAX5581
EVAL-AD5370EBZ 功能描述:BOARD EVALUATION FOR AD5370 RoHS:是 类别:编程器,开发系统 >> 评估板 - 数模转换器 (DAC) 系列:- 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:1 系列:- DAC 的数量:4 位数:12 采样率(每秒):- 数据接口:串行,SPI? 设置时间:3µs DAC 型:电流/电压 工作温度:-40°C ~ 85°C 已供物品:板 已用 IC / 零件:MAX5581
EVAL-AD5371EBZ 功能描述:BOARD EVAL FOR AD5371 RoHS:是 类别:编程器,开发系统 >> 评估板 - 数模转换器 (DAC) 系列:- 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:1 系列:- DAC 的数量:4 位数:12 采样率(每秒):- 数据接口:串行,SPI? 设置时间:3µs DAC 型:电流/电压 工作温度:-40°C ~ 85°C 已供物品:板 已用 IC / 零件:MAX5581
EVAL-AD5372EBZ 功能描述:BOARD EVAL FOR AD5372 RoHS:是 类别:编程器,开发系统 >> 评估板 - 数模转换器 (DAC) 系列:- 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:1 系列:- DAC 的数量:4 位数:12 采样率(每秒):- 数据接口:串行,SPI? 设置时间:3µs DAC 型:电流/电压 工作温度:-40°C ~ 85°C 已供物品:板 已用 IC / 零件:MAX5581
EVAL-AD5373EBZ 功能描述:BOARD EVAL FOR AD5373 RoHS:是 类别:编程器,开发系统 >> 评估板 - 数模转换器 (DAC) 系列:- 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:1 系列:- DAC 的数量:4 位数:12 采样率(每秒):- 数据接口:串行,SPI? 设置时间:3µs DAC 型:电流/电压 工作温度:-40°C ~ 85°C 已供物品:板 已用 IC / 零件:MAX5581