参数资料
型号: FM24C64FEMT8X
英文描述: I2C Serial EEPROM
中文描述: I2C串行EEPROM的
文件页数: 12/14页
文件大小: 103K
代理商: FM24C64FEMT8X
7
www.fairchildsemi.com
FM24C16U/17U Rev. A.3
FM24C16U/17U
16K-Bit
Standard
2-Wire
Bus
Interface
Serial
EEPROM
Background Information (IIC Bus)
IIC bus allows synchronous bi-directional communication be-
tween a TRANSMITTER and a RECEIVER using a Clock signal
(SCL) and a Data signal (SDA). Additionally there are up to three
Address signals (A2, A1 and A0) which collectively serve as "chip
select signal" to a device (example EEPROM) on the IIC bus.
All communication on the IIC bus must be started with a valid
START condition (by a MASTER), followed by transmittal (by the
MASTER) of byte(s) of information (Address/Data). For every byte
of information received, the addressed RECEIVER provides a valid
ACKNOWLEDGE pulse to further continue the communication
unless the RECEIVER intends to discontinue the communication.
Depending on the direction of transfer (Write or Read), the RE-
CEIVER can be a SLAVE or the MASTER. A typical IIC communi-
cation concludes with a STOP condition (by the MASTER).
Addressing an EEPROM memory location involves sending a
command string with the following information:
[DEVICE TYPE]—[DEVICE/PAGE BLOCK SELECTION]—[R/W
BIT]—{acknowledge pulse}—[ARRAY ADDRESS]
Slave Address
Slave Address is an 8-bit information consisting of a Device type
field (4bits), Device/Page block selection field (3bits) and Read/
Write bit (1bit).
Slave Address Format
Acknowledge
Acknowledge is an active LOW pulse on the SDA line driven by an
addressed receiver to the addressing transmitter to indicate
receipt of 8-bits of data. The receiver provides an ACK pulse for
every 8-bits of data received. This handshake mechanism is done
as follows: After transmitting 8-bits of data, the transmitter re-
leases the SDA line and waits for the ACK pulse. The addressed
receiver, if present, drives the ACK pulse on the SDA line during
the 9th clock and releases the SDA line back (to the transmitter).
Refer
Figure 3.
Array Address
Array address is an 8-bit information containing the address of a
memory location to be selected within a page block of the device.
16K bit Addressing Limitation:
Standard IIC specification limits the maximum size of EEPROM
memory on the bus to 16K bits. This limitation is due to the
addressing protocol implemented which consists of the 8-bit Slave
Address and an additional 8-bit field called Array Address. This
Array Address selects 1 out of 256 locations (28=256). Since the
data format of IIC specification is 8-bit wide, a total of 256 x 8 =
2048 = 2K bits now becomes addressable by this 8-bit Array
Address. These 2K bits are typically referred as a “Page Block”.
Combining this 8-bit Array Address with the 3-bit Device/Page
address (part of Slave Address) allows a maximum of 8 pages
(23=8) of memory that can be addressed. Since each page is 2K
bits in size, 8 x 2K bit = 16K bits is the maximum size of memory
that is addressable on the Standard IIC bus. This 16Kb of memory
can be in the form of a single 16Kb EEPROM device or multiple
EEPROMs of varying density (in 2Kb multiples) to a maximum
total of 16Kb. To address the needs of systems that require more
than 16Kb on the IIC bus, a different specification called “Ex-
tended IIC Specification” is used.
DEFINITIONS
WORD
8 bits (byte) of data
PAGE
16 sequential byte locations
starting at a 16-byte address
boundary, that may be pro-
grammed during a "page write"
programming cycle
PAGE BLOCK
2048 (2K) bits organized into 16
pages of addressable memory. (8
bits) x (16 bytes) x (16 pages) =
2048 bits
MASTER
Any IIC device CONTROLLING the
transfer of data (such as a
microprocessor)
SLAVE
Device being controlled
(EEPROMs are always considered
Slaves)
TRANSMITTER
Device currently SENDING data on
the bus (may be either a Master or
Slave).
RECEIVER
Device currently RECEIVING data
on the bus (Master or Slave)
Device Type
Identifier
Device/Page Block
Selection
1
0
1
0
A2
A1
A0
R/W
(LSB)
Device Type
IIC bus is designed to support a variety of devices such as RAMs,
EPROMs etc., along with EEPROMS. Hence to properly identify
various devices on the IIC bus, a 4-bit “Device Type” identifier
string is used. For EEPROMS, this 4-bit string is 1-0-1-0. Every IIC
device on the bus internally compares this 4-bit string to its own
“Device Type” string to ensure proper device selection.
Device/Page Block Selection
When multiple devices of the same type (e.g. multiple EEPROMS)
are present on the IIC bus, then the A2, A1 and A0 address
information bits are also used as part of the Slave Address. Every
IIC device on the bus internally compares this 3-bit string to its own
physical configuration (A2, A1 and A0 pins) to ensure proper
device selection. This comparison is in addition to the “Device
Type” comparison. In addition to selecting an EEPROM, these 3
bits are also used to select a “page block” within the selected
EEPROM. Each page block is 2Kbit (256Bytes) in size. Depend-
ing on the density, an EEPROM can contain from a minimum of 1
to a maximum of 8 page blocks (in multiples of 2) and selection of
a page block within a device is by using A2, A1 and A0 bits.
Read/Write Bit
Last bit of the Slave Address indicates if the intended access is
Read or Write. If the bit is "1," then the access is Read, whereas
if the bit is "0," then the access is Write.
相关PDF资料
PDF描述
FM24C64FEN I2C Serial EEPROM
FM24C64FLEM8 I2C Serial EEPROM
FM24C64FLEM8X I2C Serial EEPROM
FM24C64FLEMT8 I2C Serial EEPROM
FM24C64FLEMT8X I2C Serial EEPROM
相关代理商/技术参数
参数描述
FM24C64FEN 制造商:未知厂家 制造商全称:未知厂家 功能描述:I2C Serial EEPROM
FM24C64FLEM8 功能描述:电可擦除可编程只读存储器 SOIC-8 RoHS:否 制造商:Atmel 存储容量:2 Kbit 组织:256 B x 8 数据保留:100 yr 最大时钟频率:1000 KHz 最大工作电流:6 uA 工作电源电压:1.7 V to 5.5 V 最大工作温度:+ 85 C 安装风格:SMD/SMT 封装 / 箱体:SOIC-8
FM24C64FLEM8X 功能描述:电可擦除可编程只读存储器 SOIC-8 RoHS:否 制造商:Atmel 存储容量:2 Kbit 组织:256 B x 8 数据保留:100 yr 最大时钟频率:1000 KHz 最大工作电流:6 uA 工作电源电压:1.7 V to 5.5 V 最大工作温度:+ 85 C 安装风格:SMD/SMT 封装 / 箱体:SOIC-8
FM24C64FLEMT8 制造商:未知厂家 制造商全称:未知厂家 功能描述:I2C Serial EEPROM
FM24C64FLEMT8X 制造商:未知厂家 制造商全称:未知厂家 功能描述:I2C Serial EEPROM