参数资料
型号: ISL6227CA
厂商: Intersil
文件页数: 25/27页
文件大小: 0K
描述: IC CONTROLLER DDR, DDR2 28QSOP
标准包装: 48
应用: 控制器,DDR,DDR2
输入电压: 5 V ~ 28 V
输出数: 2
输出电压: 0.9 V ~ 5.5 V
工作温度: -10°C ~ 100°C
安装类型: 表面贴装
封装/外壳: 28-SSOP(0.154",3.90mm 宽)
供应商设备封装: 28-SSOP/QSOP
包装: 管件
ISL6227
PHASE1 and PHASE2
These traces should be short, and positioned away from other
weak signal traces. The phase node has a very high dv/dt with
a voltage swing from the input voltage to ground. No trace
should be in parallel with these traces. These traces are also
the return path for UGATE1 and UGATE2. Connect these pins
to the respective converter’s upper MOSFET source.
Pin 5 and Pin 24, the UGATE1 and UGATE2
These pins have a square shape waveform with high dv/dt. It
provides the gate drive current to charge and discharge the
top MOSFET with high di/dt. This trace should wide, short,
and away from other traces similar to the LGATEx.
BOOT1 and BOOT2
These pins di/dt are as high as that of the UGATEx;
therefore, the traces should be as short as possible.
ISEN1 and ISEN2
The ISEN trace should be a separate trace, and
independently go to the drain terminal of the lower MOSFET.
The current sense resistor should be close to ISEN pin.
The loop formed by the bottom MOSFET, output inductor,
and output capacitor, should be very small. The source of
the bottom MOSFET should tie to the negative side of the
output capacitor in order for the current sense pin to get the
voltage drop on the r DS(ON) .
EN1 and EN2
These pins stay high in enable mode and low in idle mode
and are relatively robust. Enable signals should refer to the
signal ground.
PG1 and PG2/REF
For dual switcher operations, these two lines are less noise
sensitive. For DDR applications, a capacitor should be
placed to the PG2/REF pin.
DDR
This pin should connect to VCC in DDR applications, and to
signal ground in dual switcher applications.
VIN
This pin connects to battery voltage, and is less noise sensitive.
Copper Size for the Phase Node
Big coppers on both sides of the Phase node introduce
parasitic capacitance. The capacitance of PHASE should be
kept very low to minimize ringing. If ringing is excessive, it
could easily affect current sample information. It would be
best to limit the size of the PHASE node copper in strict
accordance with the current and thermal management of the
application.
Identify the Power and Signal Ground
The input and output capacitors of the converters, the source
terminals of the bottom switching MOSFET PGND1, and
PGND2, should be closely connected to the power ground.
The other components should connect to signal ground.
Signal and power ground are tied together at the negative
terminal of the output capacitors.
Decoupling Capacitor for Switching MOSFET
It is recommended that ceramic caps be used closely
connected to the drain side of the upper MOSFET, and the
source of the lower MOSFET. This capacitor reduces the
noise and the power loss of the MOSFET. Refer to Figure 43
for the power component placement. IN
VOUT1 and VOUT2
These pins connect either to the output voltage or to the
signal ground. They are signal lines and should be kept
away from noisy lines.
VSEN1 and VSEN2
- - VIN
.
1
+ +
8
There is usually a resistor divider connecting the output
voltage to this pin. The input impedance of these two pins is
high because they are the input to the amplifiers. The correct
layout should bring the output voltage from the regulation
point to the SEN pin with kelvin traces. Build the resistor
V o V
- -
O
+ +
OUTPUT
CAP
2
3
4
SI4816DY
7
6
5
divider close to the pin so that the high impedance trace is
shorter.
L o
L o
OCSET1 and OCSET2
In dual switcher mode operation, the overcurrent set resistor
should be put close to this pin. In DDR mode operation, the
voltage divider, which divides the VDQQ voltage in half,
should be put very close to this pin. The other side of the OC
set resistor should connect to signal ground.
SOFT1 and SOFT2
The soft-start capacitors should be laid out close to this pin.
The other side of the soft-start cap should tie to signal ground.
25
INDUCTOR
L O
FIGURE 43. A GOOD EXAMPLE POWER COMPONENT
REPLACEMENT. IT SHOWS THE NEGATIVE OF INPUT
AND OUTPUT CAPACITOR AND SOURCE OF THE
MOSFET ARE TIED AT ONE POINT.
FN9094.7
May 4, 2009
相关PDF资料
PDF描述
EL7584IR IC DC-DC CONVERTER 4CH 24-TSSOP
ESM43DRKS CONN EDGECARD 86POS DIP .156 SLD
ECA44DCBD CONN EDGECARD 88POS R/A .125 SLD
ABM15DSUI CONN EDGECARD 30POS .156 DIP SLD
ECE-V1CA471P CAP ALUM 470UF 16V 20% SMD
相关代理商/技术参数
参数描述
ISL6227CA-T 功能描述:IC CONTROLLER DDR, DDR2 28QSOP RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - 专用型 系列:- 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:2,000 系列:- 应用:电源,ICERA E400,E450 输入电压:4.1 V ~ 5.5 V 输出数:10 输出电压:可编程 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:42-WFBGA,WLCSP 供应商设备封装:42-WLP 包装:带卷 (TR)
ISL6227CAZ 功能描述:电流型 PWM 控制器 VER OF ISL6227CA RoHS:否 制造商:Texas Instruments 开关频率:27 KHz 上升时间: 下降时间: 工作电源电压:6 V to 15 V 工作电源电流:1.5 mA 输出端数量:1 最大工作温度:+ 105 C 安装风格:SMD/SMT 封装 / 箱体:TSSOP-14
ISL6227CAZS2698 功能描述:IC CONTROLLER DDR, DDR2 28QSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - 专用型 系列:- 标准包装:43 系列:- 应用:控制器,Intel VR11 输入电压:5 V ~ 12 V 输出数:1 输出电压:0.5 V ~ 1.6 V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:48-VFQFN 裸露焊盘 供应商设备封装:48-QFN(7x7) 包装:管件
ISL6227CAZ-T 功能描述:电流型 PWM 控制器 VER OF ISL6227CA-T RoHS:否 制造商:Texas Instruments 开关频率:27 KHz 上升时间: 下降时间: 工作电源电压:6 V to 15 V 工作电源电流:1.5 mA 输出端数量:1 最大工作温度:+ 105 C 安装风格:SMD/SMT 封装 / 箱体:TSSOP-14
ISL6227CAZ-TS2698 功能描述:IC CONTROLLER DDR, DDR2 28QSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - 专用型 系列:- 标准包装:43 系列:- 应用:控制器,Intel VR11 输入电压:5 V ~ 12 V 输出数:1 输出电压:0.5 V ~ 1.6 V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:48-VFQFN 裸露焊盘 供应商设备封装:48-QFN(7x7) 包装:管件