参数资料
型号: ISL6334CRZ
厂商: Intersil
文件页数: 27/31页
文件大小: 0K
描述: IC CTRLR PWM 4PHASE BUCK 40-QFN
标准包装: 50
应用: 控制器,Intel VR11.1
输入电压: 3 V ~ 12 V
输出数: 1
输出电压: 0.5 V ~ 1.6 V
工作温度: 0°C ~ 70°C
安装类型: 表面贴装
封装/外壳: 40-VFQFN 裸露焊盘
供应商设备封装: 40-QFN(6x6)
包装: 管件
ISL6334, ISL6334A
where I FL is the full load current of the specific application,
and VR DROOP is the desired voltage droop under the full
load condition.
C 2 (OPTIONAL)
Based on the desired loadline R LL , the loadline regulation
R C
C C
COMP
resistor can be calculated using Equation 33:
NR R
R FB = ----------------------------------
ISEN LL
R X
(EQ. 33)
FB
where N is the active channel number, R ISEN is the sense
resistor connected to the ISEN+ pin, and R X is the
resistance of the current sense element, either the DCR of
R FB
+
V DROOP
-
VDIFF
the inductor or R SENSE depending on the sensing method.
∑ R ISEN ( n )
R X
If one or more of the current sense resistors are adjusted for
thermal balance (as in Equation 31), the load-line regulation
resistor should be selected based on the average value of
the current sensing resistors, as given in Equation 34:
R LL
R FB = ---------- (EQ. 34)
n
where R ISEN(n) is the current sensing resistor connected to
the n th ISEN+ pin.
Compensation
The two opposing goals of compensating the voltage
regulator are stability and speed. Depending on whether the
regulator employs the optional load-line regulation as
FIGURE 17. COMPENSATION CONFIGURATION FOR
LOAD-LINE REGULATED ISL6334, ISL6334A
CIRCUIT
The feedback resistor, R FB , has already been chosen as
outlined in “Load-Line Regulation Resistor” on page 26.
Select a target bandwidth for the compensated system, f 0 .
The target bandwidth must be large enough to assure
adequate transient performance, but smaller than 1/3 of the
per-channel switching frequency. The values of the
compensation components depend on the relationships of f 0
to the L-C pole frequency and the ESR zero frequency. For
each of the three cases which follow, there is a separate set
of equations for the compensation components.
------------------- > f 0
R C = R FB --------------------------------------
0.75V
2 π V P-P R FB f 0
------------------- ≤ f 0 < ------------------------------
described in Load-Line Regulation, there are two distinct
methods for achieving these goals.
COMPENSATING LOAD-LINE REGULATED
CONVERTER
The load-line regulated converter behaves in a similar
manner to a peak-current mode controller because the two
poles at the output-filter L-C resonant frequency split with
the introduction of current information into the control loop.
The final location of these poles is determined by the system
Case 1:
Case 2:
1
2 π LC
2 π f 0 V P-P LC
IN
0.75V IN
C C = -------------------------------------
1 1
2 π LC 2 π C ( ESR )
0.75 V IN
( 2 π ) 2 f 02 V P-P R FB LC
function, the gain of the current signal, and the value of the
compensation components, R C and C C .
Since the system poles and zero are affected by the values
of the components that are meant to compensate them, the
solution to the system equation becomes fairly complicated.
V P-P ( 2 π ) 2 f 02 LC
R C = R FB ----------------------------------------------
0.75V IN
C C = --------------------------------------------------------------
(EQ. 35)
f 0 > ------------------------------
0.75 V IN ( ESR )
2 π V P-P R FB f 0 L
Fortunately there is a simple approximation that comes very
close to an optimal solution. Treating the system as though it
were a voltage-mode regulator by compensating the L-C
poles and the ESR zero of the voltage-mode approximation
yields a solution that is always stable with very close to ideal
transient performance.
Case 3:
1
2 π C ( ESR )
2 π f 0 V P-P L
R C = R FB ------------------------------------------
0.75V IN ( ESR ) C
C C = -------------------------------------------------
In Equation 35, L is the per-channel filter inductance divided
by the number of active channels; C is the sum total of all
output capacitors; ESR is the equivalent-series resistance of
the bulk output-filter capacitance; and V PP is the sawtooth
amplitude described in the “Electrical Specifications” table
beginning on page 8.
27
FN6482.2
February 1, 2013
相关PDF资料
PDF描述
ISL6334DIRZ IC CTRLR PWM 4PHASE VR11.1 40QFN
ISL6336BCRZ IC CTRLR PWM SYNC BUCK 48-QFN
ISL6336IRZ IC CTRLR PWM 6PHASE BUCK 48-QFN
ISL6341CIRZ IC REG CTRLR BUCK PWM VM 10-TDFN
ISL6353IRTZ IC CONTROLLER DDR VR12 40TQFN
相关代理商/技术参数
参数描述
ISL6334CRZ-T 功能描述:IC CTRLR PWM 4PHASE BUCK 40-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - 专用型 系列:- 标准包装:43 系列:- 应用:控制器,Intel VR11 输入电压:5 V ~ 12 V 输出数:1 输出电压:0.5 V ~ 1.6 V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:48-VFQFN 裸露焊盘 供应商设备封装:48-QFN(7x7) 包装:管件
ISL6334DCRZ 功能描述:IC CTRLR PWM 4PHASE VR11.1 40QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - 专用型 系列:- 标准包装:43 系列:- 应用:控制器,Intel VR11 输入电压:5 V ~ 12 V 输出数:1 输出电压:0.5 V ~ 1.6 V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:48-VFQFN 裸露焊盘 供应商设备封装:48-QFN(7x7) 包装:管件
ISL6334DCRZ-T 功能描述:IC CTRLR PWM 4PHASE VR11.1 40QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - 专用型 系列:- 标准包装:43 系列:- 应用:控制器,Intel VR11 输入电压:5 V ~ 12 V 输出数:1 输出电压:0.5 V ~ 1.6 V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:48-VFQFN 裸露焊盘 供应商设备封装:48-QFN(7x7) 包装:管件
ISL6334DIRZ 功能描述:IC CTRLR PWM 4PHASE VR11.1 40QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - 专用型 系列:- 标准包装:43 系列:- 应用:控制器,Intel VR11 输入电压:5 V ~ 12 V 输出数:1 输出电压:0.5 V ~ 1.6 V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:48-VFQFN 裸露焊盘 供应商设备封装:48-QFN(7x7) 包装:管件
ISL6334DIRZ-T 功能描述:IC CTRLR PWM 4PHASE VR11.1 40QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - 专用型 系列:- 标准包装:43 系列:- 应用:控制器,Intel VR11 输入电压:5 V ~ 12 V 输出数:1 输出电压:0.5 V ~ 1.6 V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:48-VFQFN 裸露焊盘 供应商设备封装:48-QFN(7x7) 包装:管件