参数资料
型号: ISL6334IRZ
厂商: Intersil
文件页数: 27/31页
文件大小: 0K
描述: IC CTRLR PWM 4PHASE BUCK 40-QFN
标准包装: 50
应用: 控制器,Intel VR11.1
输入电压: 3 V ~ 12 V
输出数: 1
输出电压: 0.5 V ~ 1.6 V
工作温度: -40°C ~ 85°C
安装类型: 表面贴装
封装/外壳: 40-VFQFN 裸露焊盘
供应商设备封装: 40-QFN(6x6)
包装: 管件
ISL6334, ISL6334A
where I FL is the full load current of the specific application,
and VR DROOP is the desired voltage droop under the full
load condition.
C 2 (OPTIONAL)
Based on the desired loadline R LL , the loadline regulation
R C
C C
COMP
resistor can be calculated using Equation 33:
NR R
R FB = ----------------------------------
ISEN LL
R X
(EQ. 33)
FB
where N is the active channel number, R ISEN is the sense
resistor connected to the ISEN+ pin, and R X is the
resistance of the current sense element, either the DCR of
R FB
+
V DROOP
-
VDIFF
the inductor or R SENSE depending on the sensing method.
∑ R ISEN ( n )
R X
If one or more of the current sense resistors are adjusted for
thermal balance (as in Equation 31), the load-line regulation
resistor should be selected based on the average value of
the current sensing resistors, as given in Equation 34:
R LL
R FB = ---------- (EQ. 34)
n
where R ISEN(n) is the current sensing resistor connected to
the n th ISEN+ pin.
Compensation
The two opposing goals of compensating the voltage
regulator are stability and speed. Depending on whether the
regulator employs the optional load-line regulation as
FIGURE 17. COMPENSATION CONFIGURATION FOR
LOAD-LINE REGULATED ISL6334, ISL6334A
CIRCUIT
The feedback resistor, R FB , has already been chosen as
outlined in “Load-Line Regulation Resistor” on page 26.
Select a target bandwidth for the compensated system, f 0 .
The target bandwidth must be large enough to assure
adequate transient performance, but smaller than 1/3 of the
per-channel switching frequency. The values of the
compensation components depend on the relationships of f 0
to the L-C pole frequency and the ESR zero frequency. For
each of the three cases which follow, there is a separate set
of equations for the compensation components.
------------------- > f 0
R C = R FB --------------------------------------
0.75V
2 π V P-P R FB f 0
------------------- ≤ f 0 < ------------------------------
described in Load-Line Regulation, there are two distinct
methods for achieving these goals.
COMPENSATING LOAD-LINE REGULATED
CONVERTER
The load-line regulated converter behaves in a similar
manner to a peak-current mode controller because the two
poles at the output-filter L-C resonant frequency split with
the introduction of current information into the control loop.
The final location of these poles is determined by the system
Case 1:
Case 2:
1
2 π LC
2 π f 0 V P-P LC
IN
0.75V IN
C C = -------------------------------------
1 1
2 π LC 2 π C ( ESR )
0.75 V IN
( 2 π ) 2 f 02 V P-P R FB LC
function, the gain of the current signal, and the value of the
compensation components, R C and C C .
Since the system poles and zero are affected by the values
of the components that are meant to compensate them, the
solution to the system equation becomes fairly complicated.
V P-P ( 2 π ) 2 f 02 LC
R C = R FB ----------------------------------------------
0.75V IN
C C = --------------------------------------------------------------
(EQ. 35)
f 0 > ------------------------------
0.75 V IN ( ESR )
2 π V P-P R FB f 0 L
Fortunately there is a simple approximation that comes very
close to an optimal solution. Treating the system as though it
were a voltage-mode regulator by compensating the L-C
poles and the ESR zero of the voltage-mode approximation
yields a solution that is always stable with very close to ideal
transient performance.
Case 3:
1
2 π C ( ESR )
2 π f 0 V P-P L
R C = R FB ------------------------------------------
0.75V IN ( ESR ) C
C C = -------------------------------------------------
In Equation 35, L is the per-channel filter inductance divided
by the number of active channels; C is the sum total of all
output capacitors; ESR is the equivalent-series resistance of
the bulk output-filter capacitance; and V PP is the sawtooth
amplitude described in the “Electrical Specifications” table
beginning on page 8.
27
FN6482.2
February 1, 2013
相关PDF资料
PDF描述
X40015S8I-A IC VOLTAGE MONITOR DUAL 8-SOIC
X40015S8-CT1 IC VOLTAGE MONITOR DUAL 8-SOIC
RMC26DRTN-S13 CONN EDGECARD 52POS .100 EXTEND
X40015V8I-AT1 IC VOLTAGE MONITOR DUAL 8-TSSOP
EMA30DRSD-S273 CONN EDGECARD 60POS DIP .125 SLD
相关代理商/技术参数
参数描述
ISL6334IRZ-T 功能描述:IC CTRLR PWM 4PHASE BUCK 40-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - 专用型 系列:- 标准包装:43 系列:- 应用:控制器,Intel VR11 输入电压:5 V ~ 12 V 输出数:1 输出电压:0.5 V ~ 1.6 V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:48-VFQFN 裸露焊盘 供应商设备封装:48-QFN(7x7) 包装:管件
ISL6336ACRZ 功能描述:IC CTRLR PWM 6PHASE BUCK 48-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - 专用型 系列:- 标准包装:43 系列:- 应用:控制器,Intel VR11 输入电压:5 V ~ 12 V 输出数:1 输出电压:0.5 V ~ 1.6 V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:48-VFQFN 裸露焊盘 供应商设备封装:48-QFN(7x7) 包装:管件
ISL6336ACRZ-T 功能描述:IC CTRLR PWM 6PHASE BUCK 48-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - 专用型 系列:- 标准包装:43 系列:- 应用:控制器,Intel VR11 输入电压:5 V ~ 12 V 输出数:1 输出电压:0.5 V ~ 1.6 V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:48-VFQFN 裸露焊盘 供应商设备封装:48-QFN(7x7) 包装:管件
ISL6336AIRZ 功能描述:IC CTRLR PWM 6PHASE BUCK 48-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - 专用型 系列:- 标准包装:43 系列:- 应用:控制器,Intel VR11 输入电压:5 V ~ 12 V 输出数:1 输出电压:0.5 V ~ 1.6 V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:48-VFQFN 裸露焊盘 供应商设备封装:48-QFN(7x7) 包装:管件
ISL6336AIRZ-T 功能描述:IC CTRLR PWM 6PHASE BUCK 48-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - 专用型 系列:- 标准包装:43 系列:- 应用:控制器,Intel VR11 输入电压:5 V ~ 12 V 输出数:1 输出电压:0.5 V ~ 1.6 V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:48-VFQFN 裸露焊盘 供应商设备封装:48-QFN(7x7) 包装:管件