参数资料
型号: ISL6527AIB-T
厂商: Intersil
文件页数: 9/16页
文件大小: 0K
描述: IC REG CTRLR BST PWM VM 14-SOIC
标准包装: 2,500
PWM 型: 电压模式
输出数: 1
频率 - 最大: 650kHz
占空比: 100%
电源电压: 2.97 V ~ 3.63 V
降压:
升压:
回扫:
反相:
倍增器:
除法器:
Cuk:
隔离:
工作温度: -40°C ~ 85°C
封装/外壳: 14-SOIC(0.154",3.90mm 宽)
包装: 带卷 (TR)
ISL6527, ISL6527A
For an equation for the ripple current see the section under
component guidelines titled “Output Inductor Selection” on
A small ceramic capacitor should be placed in parallel with
R OCSET to smooth the voltage across R OCSET in the
presence of switching noise on the input voltage.
Current Sinking
The ISL6527, ISL6527A incorporate a MOSFET
shoot-through protection method, which allows a converter
to sink current as well as source current. Care should be
exercised when designing a converter with the ISL6527,
ISL6527A when it is known that the converter may sink
current.
When the converter is sinking current, it is behaving as a
boost converter that is regulating its input voltage. This
means that the converter is boosting current into the input
rail of the regulator. If there is nowhere for this current to go,
such as to other distributed loads on the rail or through a
voltage limiting protection device, the capacitance on this rail
will absorb the current. This situation will allow the voltage
level of the input rail to increase. If the voltage level of the rail
is boosted to a level that exceeds the maximum voltage
rating of any components attached to the input rail, then
those components may experience an irreversible failure or
experience stress that may shorten their lifespan. Ensuring
that there is a path for the current to flow other than the
a large voltage spike during the switching interval. Careful
component selection, tight layout of the critical
components, and short, wide traces minimizes the
magnitude of voltage spikes.
There are two sets of critical components in a DC/DC
converter using the ISL6527, ISL6527A. The switching
components are the most critical because they switch large
amounts of energy, and therefore tend to generate large
amounts of noise. Next, are the small signal components,
which connect to sensitive nodes or supply critical bypass
current and signal coupling.
A multi-layer printed circuit board is recommended. Figure 4
shows the connections of the critical components in the
converter. Note that capacitors C IN and C OUT could each
represent numerous physical capacitors. Dedicate one solid
layer, usually a middle layer of the PC board, for a ground
plane and make all critical component ground connections
with vias to this layer. Dedicate another solid layer as a
power plane and break this plane into smaller islands of
common voltage levels. Keep the metal runs from the
PHASE terminals to the output inductor short. The power
plane should support the input power and output power
nodes. Use copper filled polygons on the top and bottom
circuit layers for the phase nodes. Use the remaining printed
circuit layers for small signal wiring. The wiring traces from
the GATE pins to the MOSFET gates should be kept short
and wide enough to easily handle the 1A of drive current.
capacitance on the rail will prevent this failure mode.
The switching components should be placed close to the
External Reference
The ISL6527, ISL6527A allow the designer to determine the
reference voltage that is used. This allows the ISL6527,
ISL6527A to be used in many specialized applications, such
as the V TT termination voltage in a DDR Memory power
supply, which must track the V DDQ voltage by 50%. Care
must be taken to insure that this voltage does not exceed
1.5V.
Application Guidelines
Layout Considerations
Layout is very important in high frequency switching
converter design. With power devices switching efficiently at
300kHz or 600kHz, the resulting current transitions from one
device to another cause voltage spikes across the
interconnecting impedances and parasitic circuit elements.
These voltage spikes can degrade efficiency, radiate noise
into the circuit, and lead to device over-voltage stress.
Careful component layout and printed circuit board design
minimizes the voltage spikes in the converters.
As an example, consider the turn-off transition of the PWM
MOSFET. Prior to turn-off, the MOSFET is carrying the full
load current. During turn-off, current stops flowing in the
MOSFET and is picked up by the lower MOSFET. Any
parasitic inductance in the switched current path generates
9
ISL6527, ISL6527A first. Minimize the length of the
connections between the input capacitors, C IN , and the power
switches by placing them nearby. Position both the ceramic
and bulk input capacitors as close to the upper MOSFET drain
as possible. Position the output inductor and output capacitors
between the upper MOSFET and lower MOSFET and the
load.
The critical small signal components include any bypass
capacitors, feedback components, and compensation
components. Position the bypass capacitor, C BP , close to
the VCC pin with a via directly to the ground plane. Place the
PWM converter compensation components close to the FB
and COMP pins. The feedback resistors for both regulators
should also be located as close as possible to the relevant
FB pin with vias tied straight to the ground plane as required.
Feedback Compensation
Figure 5 highlights the voltage-mode control loop for a
synchronous-rectified buck converter. The output voltage
(V OUT ) is regulated to the Reference voltage level. The
error amplifier (Error Amp) output (V E/A ) is compared with
the oscillator (OSC) triangular wave to provide a
pulse-width modulated (PWM) wave with an amplitude of
V IN at the PHASE node. The PWM wave is smoothed by the
output filter (L O and C O ).
FN9056.10
November 18, 2008
相关PDF资料
PDF描述
X40030S14IZ-A IC VOLTAGE MONITOR TRPL 14-SOIC
VI-B4F-EV-F3 CONVERTER MOD DC/DC 72V 150W
ISL6552CR IC REG CTRLR BUCK PWM 20-QFN
ISL6552CB-T IC REG CTRLR BUCK PWM 20-SOIC
ISL6552CB IC REG CTRLR BUCK PWM 20-SOIC
相关代理商/技术参数
参数描述
ISL6527AIBZ 制造商:Rochester Electronics LLC 功能描述: 制造商:Intersil Corporation 功能描述:
ISL6527AIR 功能描述:IC REG CTRLR BST PWM VM 16-QFN RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:4,000 系列:- PWM 型:电压模式 输出数:1 频率 - 最大:1.5MHz 占空比:66.7% 电源电压:4.75 V ~ 5.25 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 85°C 封装/外壳:40-VFQFN 裸露焊盘 包装:带卷 (TR)
ISL6527AIR-T 功能描述:IC REG CTRLR BST PWM VM 16-QFN RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:4,000 系列:- PWM 型:电压模式 输出数:1 频率 - 最大:1.5MHz 占空比:66.7% 电源电压:4.75 V ~ 5.25 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 85°C 封装/外壳:40-VFQFN 裸露焊盘 包装:带卷 (TR)
ISL6527AIRZ 功能描述:电压模式 PWM 控制器 600KHZ SNG PWM CONTR LR W/EXT. REF. 16LD RoHS:否 制造商:Texas Instruments 输出端数量:1 拓扑结构:Buck 输出电压:34 V 输出电流: 开关频率: 工作电源电压:4.5 V to 5.5 V 电源电流:600 uA 最大工作温度:+ 125 C 最小工作温度:- 40 C 封装 / 箱体:WSON-8 封装:Reel
ISL6527AIRZ-T 功能描述:IC REG CTRLR BST PWM VM 16-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:2,500 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:275kHz 占空比:50% 电源电压:18 V ~ 110 V 降压:无 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:是 工作温度:-40°C ~ 85°C 封装/外壳:8-SOIC(0.154",3.90mm 宽) 包装:带卷 (TR)