参数资料
型号: LM3876DWF
厂商: NATIONAL SEMICONDUCTOR CORP
元件分类: 音频/视频放大
英文描述: 56 W, 1 CHANNEL, AUDIO AMPLIFIER, UUC
封装: WAFER
文件页数: 5/22页
文件大小: 626K
代理商: LM3876DWF
Application Information (Continued)
But since we know P
DMAX, θJC, and θSC for the application
and we are looking for
θ
SA, we have the following:
θ
SA = [(TJmax TAmb)PDMAX JC + θCS)]/PDMAX
(4)
Again it must be noted that the value of
θ
SA is dependent
upon the system designer’s amplifier application and its cor-
responding parameters as described previously. If the ambi-
ent temperature that the audio amplifier is to be working un-
der is higher than the normal 25C, then the thermal
resistance for the heat sink, given all other things are equal,
will need to be smaller.
Equations (1), (4) are the only equations needed in the de-
termination of the maximum heat sink thermal resistance.
This is of course given that the system designer knows the
required supply voltages to drive his rated load at a particular
power output level and the parameters provided by the semi-
conductor manufacturer. These parameters are the junction
to case thermal resistance,
θ
JC,TJmax = 150C, and the rec-
ommended Thermalloy Thermacote thermal compound re-
sistance,
θ
CS.
SIGNAL-TO-NOISE RATIO
In the measurement of the signal-to-noise ratio, misinterpre-
tations of the numbers actually measured are common. One
amplifier may sound much quieter than another, but due to
improper testing techniques, they appear equal in measure-
ments. This is often the case when comparing integrated cir-
cuit designs to discrete amplifier designs. Discrete transistor
amps often “run out of gain” at high frequencies and there-
fore have small bandwidths to noise as indicated below.
Integrated circuits have additional open loop gain allowing
additional feedback loop gain in order to lower harmonic dis-
tortion and improve frequency response. It is this additional
bandwidth that can lead to erroneous signal-to-noise mea-
surements if not considered during the measurement pro-
cess. In the typical example above, the difference in band-
width appears small on a log scale but the factor of 10 in
bandwidth, (200 kHz to 2 MHz) can result in a 10 dB theoreti-
cal difference in the signal-to-noise ratio (white noise is pro-
portional to the square root of the bandwidth in a system).
In comparing audio amplifiers it is necessary to measure the
magnitude of noise in the audible bandwidth by using a
“weighting” filter (Note 16). A “weighting” filter alters the fre-
quency response in order to compensate for the average hu-
man ear’s sensitivity to the frequency spectra. The weighting
filters at the same time provide the bandwidth limiting as dis-
cussed in the previous paragraph.
Note 16: CCIR/ARM:
A Practical Noise Measurement Method; by Ray
Dolby, David Robinson and Kenneth Gundry, AES Preprint No. 1353 (F-3).
In addition to noise filtering, differing meter types give differ-
ent noise readings. Meter responses include:
1.
RMS reading,
2.
average responding,
3.
peak reading, and
4.
quasi peak reading.
Although theoretical noise analysis is derived using true
RMS based calculations, most actual measurements are
taken with ARM (Average Responding Meter) test equip-
ment.
Typical signal-to-noise figures are listed for an A-weighted fil-
ter which is commonly used in the measurement of noise.
The shape of all weighting filters is similar, with the peak of
the curve usually occurring in the 3 kHz–7 kHz region as
shown below.
SUPPLY BYPASSING
The LM3876 has excellent power supply rejection and does
not require a regulated supply. However, to eliminate pos-
sible oscillations all op amps and power op amps should
have their supply leads bypassed with low-inductance ca-
pacitors having short leads and located close to the package
terminals. Inadequate power supply bypassing will manifest
itself by a low frequency oscillation known as “motorboating”
or by high frequency instabilities. These instabilities can be
eliminated through multiple bypassing utilizing a large tanta-
lum or electrolytic capacitor (10 F or larger) which is used to
absorb low frequency variations and a small ceramic capaci-
tor (0.1 F) to prevent any high frequency feedback through
the power supply lines.
If adequate bypassing is not provided the current in the sup-
ply leads which is a rectified component of the load current
may be fed back into internal circuitry. This signal causes low
distortion at high frequencies requiring that the supplies be
bypassed at the package terminals with an electrolytic ca-
pacitor of 470 F or more.
LEAD INDUCTANCE
Power op amps are sensitive to inductance in the output
lead, particularly with heavy capacitive loading. Feedback to
the input should be taken directly from the output terminal,
minimizing common inductance with the load.
Lead inductance can also cause voltage surges on the sup-
plies. With long leads to the power supply, energy is stored in
the lead inductance when the output is shorted. This energy
can be dumped back into the supply bypass capacitors when
the short is removed. The magnitude of this transient is re-
duced by increasing the size of the bypass capacitor near
the IC. With at least a 20 F local bypass, these voltage
surges are important only if the lead length exceeds a couple
feet (> 1 H lead inductance). Twisting together the supply
and ground leads minimizes the effect.
DS011832-13
DS011832-14
www.national.com
13
相关PDF资料
PDF描述
LM3876MWC 56 W, 1 CHANNEL, AUDIO AMPLIFIER, UUC
LM3876MDC 56 W, 1 CHANNEL, AUDIO AMPLIFIER, UUC
LM387N VIDEO PREAMPLIFIER, PDIP8
LM387V 2 CHANNEL, VIDEO PREAMPLIFIER, PDIP8
LM3886DWF 68 W, 1 CHANNEL, AUDIO AMPLIFIER, UUC
相关代理商/技术参数
参数描述
LM3876T 功能描述:音频放大器 RoHS:否 制造商:STMicroelectronics 产品:General Purpose Audio Amplifiers 输出类型:Digital 输出功率: THD + 噪声: 工作电源电压:3.3 V 电源电流: 最大功率耗散: 最大工作温度: 安装风格:SMD/SMT 封装 / 箱体:TQFP-64 封装:Reel
LM3876T 制造商:National Semiconductor Corporation 功能描述:56W W/Mute, 1 Channel Lm3876T IC Audio Amp
LM3876T/NOPB 功能描述:音频放大器 RoHS:否 制造商:STMicroelectronics 产品:General Purpose Audio Amplifiers 输出类型:Digital 输出功率: THD + 噪声: 工作电源电压:3.3 V 电源电流: 最大功率耗散: 最大工作温度: 安装风格:SMD/SMT 封装 / 箱体:TQFP-64 封装:Reel
LM3876TF 功能描述:音频放大器 RoHS:否 制造商:STMicroelectronics 产品:General Purpose Audio Amplifiers 输出类型:Digital 输出功率: THD + 噪声: 工作电源电压:3.3 V 电源电流: 最大功率耗散: 最大工作温度: 安装风格:SMD/SMT 封装 / 箱体:TQFP-64 封装:Reel
LM3876TF NOPB 制造商:Texas Instruments 功能描述:8MHz Class-AB Bulk