参数资料
型号: LM4990ITL/NOPB
厂商: NATIONAL SEMICONDUCTOR CORP
元件分类: 音频/视频放大
英文描述: 2 W, 1 CHANNEL, AUDIO AMPLIFIER, PBGA9
封装: MICRO SMD-9
文件页数: 6/19页
文件大小: 1124K
代理商: LM4990ITL/NOPB
Application Information (Continued)
external component combinations, consideration to compo-
nent values must be used to maximize overall system qual-
ity.
The LM4990 is unity-gain stable which gives the designer
maximum system flexibility. The LM4990 should be used in
low gain configurations to minimize THD+N+N values, and
maximize the signal to noise ratio. Low gain configurations
require large input signals to obtain a given output power.
Input signals equal to or greater than 1Vrms are available
from sources such as audio codecs. Please refer to the
section, Audio Power Amplifier Design, for a more com-
plete explanation of proper gain selection.
Besides gain, one of the major considerations is the closed-
loop bandwidth of the amplifier. To a large extent, the band-
width is dictated by the choice of external components
shown in Figure 1. The input coupling capacitor, C
i, forms a
first order high pass filter which limits low frequency re-
sponse. This value should be chosen based on needed
frequency response for a few distinct reasons.
Selection of Input Capacitor Size
Large input capacitors are both expensive and space hungry
for portable designs. Clearly, a certain sized capacitor is
needed to couple in low frequencies without severe attenu-
ation. But in many cases the speakers used in portable
systems, whether internal or external, have little ability to
reproduce signals below 100Hz to 150Hz. Thus, using a
large input capacitor may not increase actual system perfor-
mance.
In addition to system cost and size, click and pop perfor-
mance is effected by the size of the input coupling capacitor,
C
i. A larger input coupling capacitor requires more charge to
reach its quiescent DC voltage (nominally 1/2 V
DD). This
charge comes from the output via the feedback and is apt to
create pops upon device enable. Thus, by minimizing the
capacitor size based on necessary low frequency response,
turn-on pops can be minimized.
Besides minimizing the input capacitor size, careful consid-
eration should be paid to the bypass capacitor value. Bypass
capacitor, C
B, is the most critical component to minimize
turn-on pops since it determines how fast the LM4990 turns
on. The slower the LM4990’s outputs ramp to their quiescent
DC voltage (nominally 1/2 V
DD), the smaller the turn-on pop.
Choosing C
B equal to 1.0F along with a small value of Ci (in
the range of 0.1F to 0.39F), should produce a virtually
clickless and popless shutdown function. While the device
will function properly, (no oscillations or motorboating), with
C
B equal to 0.1F, the device will be much more susceptible
to turn-on clicks and pops. Thus, a value of C
B equal to
1.0F is recommended in all but the most cost sensitive
designs.
AUDIO POWER AMPLIFIER DESIGN
A 1W/8
Audio Amplifier
Given:
Power Output
1Wrms
Load Impedance
8
Input Level
1Vrms
Input Impedance
20k
Bandwidth
100Hz–20kHz ± 0.25dB
A designer must first determine the minimum supply rail to
obtain the specified output power. By extrapolating from the
Output Power vs Supply Voltage graphs in the Typical Per-
formance Characteristics section, the supply rail can be
easily found.
5V is a standard voltage in most applications, it is chosen for
the supply rail. Extra supply voltage creates headroom that
allows the LM4990 to reproduce peaks in excess of 1W
without producing audible distortion. At this time, the de-
signer must make sure that the power supply choice along
with the output impedance does not violate the conditions
explained in the Power Dissipation section.
Once the power dissipation equations have been addressed,
the required differential gain can be determined from Equa-
tion 2.
(2)
R
f/Ri =AVD/2
From Equation 2, the minimum A
VD is 2.83; use AVD =3.
Since the desired input impedance was 20k
, and with a
A
VD impedance of 2, a ratio of 1.5:1 of Rf to Ri results in an
allocation of R
i = 20k
and R
f = 30k
. The final design step
is to address the bandwidth requirements which must be
stated as a pair of 3dB frequency points. Five times away
from a 3dB point is 0.17dB down from passband response
which is better than the required ±0.25dB specified.
f
L = 100Hz/5 = 20Hz
f
H = 20kHz*5= 100kHz
As stated in the External Components section, R
i in con-
junction with C
i create a highpass filter.
C
i
≥ 1/(2π*20k*20Hz) = 0.397F; use 0.39F
The high frequency pole is determined by the product of the
desired frequency pole, f
H, and the differential gain, AVD.
With a A
VD = 3 and fH = 100kHz, the resulting GBWP =
300kHz which is much smaller than the LM4990 GBWP of
2.5MHz. This figure displays that if a designer has a need to
design an amplifier with a higher differential gain, the
LM4990 can still be used without running into bandwidth
limitations.
LM4990
www.national.com
14
相关PDF资料
PDF描述
LM4990ITLX/NOPB 2 W, 1 CHANNEL, AUDIO AMPLIFIER, PBGA9
LM4995SDX/NOPB 1.25 W, 1 CHANNEL, AUDIO AMPLIFIER, DSO8
LM5007MMEP/NOPB SWITCHING REGULATOR, PDSO8
LM5007MMEP SWITCHING REGULATOR, PDSO8
LM5060MMX 1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO10
相关代理商/技术参数
参数描述
LM4990ITLX 制造商:NSC 制造商全称:National Semiconductor 功能描述:2 Watt Audio Power Amplifier with Selectable Shutdown Logic Level
LM4990ITLX/NOPB 功能描述:音频放大器 RoHS:否 制造商:STMicroelectronics 产品:General Purpose Audio Amplifiers 输出类型:Digital 输出功率: THD + 噪声: 工作电源电压:3.3 V 电源电流: 最大功率耗散: 最大工作温度: 安装风格:SMD/SMT 封装 / 箱体:TQFP-64 封装:Reel
LM4990LD 功能描述:音频放大器 RoHS:否 制造商:STMicroelectronics 产品:General Purpose Audio Amplifiers 输出类型:Digital 输出功率: THD + 噪声: 工作电源电压:3.3 V 电源电流: 最大功率耗散: 最大工作温度: 安装风格:SMD/SMT 封装 / 箱体:TQFP-64 封装:Reel
LM4990LD/NOPB 功能描述:音频放大器 RoHS:否 制造商:STMicroelectronics 产品:General Purpose Audio Amplifiers 输出类型:Digital 输出功率: THD + 噪声: 工作电源电压:3.3 V 电源电流: 最大功率耗散: 最大工作温度: 安装风格:SMD/SMT 封装 / 箱体:TQFP-64 封装:Reel
LM4990LDX 功能描述:音频放大器 RoHS:否 制造商:STMicroelectronics 产品:General Purpose Audio Amplifiers 输出类型:Digital 输出功率: THD + 噪声: 工作电源电压:3.3 V 电源电流: 最大功率耗散: 最大工作温度: 安装风格:SMD/SMT 封装 / 箱体:TQFP-64 封装:Reel