
Liteon Semiconductor Corporation
LSP3120
52KHZ 3A PWM Buck DC/DC Converter
Rev1.0
7/9
might be needed, especially for high ambient temperatures and high output voltages.
For the best thermal performance, wide copper traces and generous amounts of printed circuit board copper
should be used in the board layout. (Once exception to this is the output (switch) pin, which should not have
large areas of copper.) Large areas of copper provide the best transfer of heat (lower thermal resistance) to the
surrounding air, and moving air lowers the thermal resistance even further.
Package thermal resistance and junction temperature rise numbers are all approximate, and there are many
factors that will affect these numbers. Some of these factors include board size, shape, thickness, position,
location, and even board temperature. Other factors are, trace width, total printed circuit copper area, copper
thickness, single or double-sided, multilayer board and the amount of solder on the board. The effectiveness of
the PC board to dissipate heat also depends on the size, quantity and spacing of other components on the
board, as well as whether the surrounding air is still or moving. Furthermore, some of these components such
as the catch diode will add heat to the PC board and the heat can vary as the input voltage changes. For the
inductor, depending on the physical size, type of core material and the DC resistance, it could either act as a
heat sink taking heat away from the board, or it could add heat to the board.
ORDERING INFORMATION
MARKING INFORMATION
1) TO220-5L
2) TO263-5L