参数资料
型号: LT1376CS#TR
厂商: Linear Technology
文件页数: 11/28页
文件大小: 0K
描述: IC REG BUCK ADJ 1.5A 16SOIC
标准包装: 2,500
类型: 降压(降压)
输出类型: 可调式
输出数: 1
输出电压: 2.42 V ~ 21.5 V
输入电压: 5 V ~ 25 V
PWM 型: 电流模式
频率 - 开关: 500kHz
电流 - 输出: 1.5A
同步整流器:
工作温度: 0°C ~ 125°C
安装类型: 表面贴装
封装/外壳: 16-SOIC(0.154",3.90mm 宽)
包装: 带卷 (TR)
供应商设备封装: 16-SOIC
LT1375/LT1376
APPLICATIO N S I N FOR M ATIO N
Example: with L = 2 μ H, V OUT = 5V, and V IN(MAX ) = 15V,
must withstand continuous fault conditions. If maxi-
( = 1 . 5 ) ?? 500 ? 10 ? ? ?? 2 ? 10 ?? ( 15 ) = 338 mA
? 6
3
I OUT ( MAX
)
2
2 ( 5 ) ( 15 ? 5 )
mum load current is 0.5A, for instance, a 0.5A inductor
may not survive a continuous 1.5A overload condition.
Dead shorts will actually be more gentle on the induc-
tor because the LT1376 has foldback current limiting.
2. Calculate peak inductor current at full load current to
V OUT ( V IN ? V OUT )
2 ( f )( L )( V )
Themainreasonforusingsuchatinyinductoristhatitis
physically very small, but keep in mind that peak-to-peak
inductor current will be very high. This will increase output
ripple voltage. If the output capacitor has to be made larger
to reduce ripple voltage, the overall circuit could actually
wind up larger.
CHOOSING THE INDUCTOR AND OUTPUT CAPACITOR
For most applications the output inductor will fall in the
range of 3 μ H to 20 μ H. Lower values are chosen to reduce
physical size of the inductor. Higher values allow more
output current because they reduce peak current seen by
the LT1376 switch, which has a 1.5A limit. Higher values
also reduce output ripple voltage, and reduce core loss.
Graphs in the Typical Performance Characteristics section
show maximum output load current versus inductor size
and input voltage. A second graph shows core loss versus
inductor size for various core materials.
When choosing an inductor you might have to consider
maximum load current, core and copper losses, allowable
component height, output voltage ripple, EMI, fault cur-
rent in the inductor, saturation, and of course, cost. The
following procedure is suggested as a way of handling
these somewhat complicated and conflicting requirements.
1. Choose a value in microhenries from the graphs of
maximum load current and core loss. Choosing a small
inductor with lighter loads may result in discontinuous
mode of operation, but the LT1376 is designed to work
well in either mode. Keep in mind that lower core loss
means higher cost, at least for closed core geometries
like toroids. The core loss graphs show both absolute
loss and percent loss for a 5W output, so actual percent
losses must be calculated for each situation.
Assume that the average inductor current is equal to
load current and decide whether or not the inductor
ensure that the inductor will not saturate. Peak current
can be significantly higher than output current, espe-
cially with smaller inductors and lighter loads, so don’t
omit this step. Powdered iron cores are forgiving
because they saturate softly, whereas ferrite cores
saturate abruptly. Other core materials fall in between
somewhere. The following formula assumes continu-
ous mode of operation, but it errs only slightly on the
high side for discontinuous mode, so it can be used for
all conditions.
I PEAK = I OUT +
IN
V IN = Maximum input voltage
f = Switching frequency, 500kHz
3. Decide if the design can tolerate an “open” core geom-
etry like a rod or barrel, which have high magnetic field
radiation, or whether it needs a closed core like a toroid
to prevent EMI problems. One would not want an open
core next to a magnetic storage media, for instance!
This is a tough decision because the rods or barrels are
temptingly cheap and small and there are no helpful
guidelines to calculate when the magnetic field radia-
tion will be a problem.
4. Start shopping for an inductor (see representative
surface mount units in Table 2) which meets the re-
quirements of core shape, peak current (to avoid satu-
ration), average current (to limit heating), and fault
current (if the inductor gets too hot, wire insulation will
melt and cause turn-to-turn shorts). Keep in mind that
all good things like high efficiency, low profile, and high
temperature operation will increase cost, sometimes
dramatically. Get a quote on the cheapest unit first to
calibrate yourself on price, then ask for what you really
want.
13756fd
11
相关PDF资料
PDF描述
V110B15C150B3 CONVERTER MOD DC/DC 15V 150W
LT1054IN8 IC REG SWITCHED CAP DBL INV 8DIP
LTC3536IMSE#PBF IC REG BUCK BST SYNC ADJ 12MSOP
LTC3521EUF#PBF IC REG BUCK BOOST SYNC ADJ 24QFN
LT3695EMSE-3.3#PBF IC REG BUCK 3.3V 1A 16MSOP
相关代理商/技术参数
参数描述
LT1376HV 制造商:LINER 制造商全称:Linear Technology 功能描述:1.5A, 500kHz Step-Down Switching Regulators
LT1376HVCS 功能描述:IC REG BUCK ADJ 1.5A 16SOIC RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 设计资源:Design Support Tool 标准包装:1 系列:- 类型:升压(升压) 输出类型:固定 输出数:1 输出电压:3V 输入电压:0.75 V ~ 2 V PWM 型:- 频率 - 开关:- 电流 - 输出:100mA 同步整流器:是 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:SOT-23-5 细型,TSOT-23-5 包装:剪切带 (CT) 供应商设备封装:TSOT-23-5 其它名称:AS1323-BTTT-30CT
LT1376HVCS#PBF 功能描述:IC REG BUCK ADJ 1.5A 16SOIC RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 设计资源:Design Support Tool 标准包装:1 系列:- 类型:升压(升压) 输出类型:固定 输出数:1 输出电压:3V 输入电压:0.75 V ~ 2 V PWM 型:- 频率 - 开关:- 电流 - 输出:100mA 同步整流器:是 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:SOT-23-5 细型,TSOT-23-5 包装:剪切带 (CT) 供应商设备封装:TSOT-23-5 其它名称:AS1323-BTTT-30CT
LT1376HVCS#TR 功能描述:IC REG BUCK ADJ 1.5A 16SOIC RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 设计资源:Design Support Tool 标准包装:1 系列:- 类型:升压(升压) 输出类型:固定 输出数:1 输出电压:3V 输入电压:0.75 V ~ 2 V PWM 型:- 频率 - 开关:- 电流 - 输出:100mA 同步整流器:是 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:SOT-23-5 细型,TSOT-23-5 包装:剪切带 (CT) 供应商设备封装:TSOT-23-5 其它名称:AS1323-BTTT-30CT
LT1376HVCS#TRPBF 功能描述:IC REG BUCK ADJ 1.5A 16SOIC RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 设计资源:Design Support Tool 标准包装:1 系列:- 类型:升压(升压) 输出类型:固定 输出数:1 输出电压:3V 输入电压:0.75 V ~ 2 V PWM 型:- 频率 - 开关:- 电流 - 输出:100mA 同步整流器:是 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:SOT-23-5 细型,TSOT-23-5 包装:剪切带 (CT) 供应商设备封装:TSOT-23-5 其它名称:AS1323-BTTT-30CT