参数资料
型号: LT1576CS8-5#PBF
厂商: Linear Technology
文件页数: 21/28页
文件大小: 0K
描述: IC REG BUCK 5V 1.5A 8SOIC
标准包装: 100
类型: 降压(降压)
输出类型: 固定
输出数: 1
输出电压: 5V
输入电压: 5 V ~ 25 V
PWM 型: 电流模式
频率 - 开关: 200kHz
电流 - 输出: 1.5A
同步整流器:
工作温度: 0°C ~ 125°C
安装类型: 表面贴装
封装/外壳: 8-SOIC(0.154",3.90mm 宽)
包装: 管件
供应商设备封装: 8-SOIC
LT1576/LT1576-5
APPLICATIO N S I N FOR M ATIO N
Analog experts will note that around 7kHz, phase dips
close to the zero phase margin line. This is typical of
switching regulators, especially those that operate over a
wide range of loads. This region of low phase is not a
problem as long as it does not occur near unity-gain. In
practice, the variability of output capacitor ESR tends to
dominate all other effects with respect to loop response.
Variations in ESR will cause unity-gain to move around,
but at the same time phase moves with it so that adequate
phase margin is maintained over a very wide range of ESR
( ≥ ± 3:1).
subharmonic switching occurs, as evidenced by alternat-
ing pulse widths seen at the switch node. In more severe
cases, the regulator squeals or hisses audibly even though
the output voltage is still roughly correct. None of this will
show on a theoretical Bode plot because Bode is an
amplitude insensitive analysis. Tests have shown that if
ripple voltage on the V C is held to less than 100mV P-P , the
LT1576 will be well behaved. The formula below will give
an estimate of V C ripple voltage when R C is added to the
loop, assuming that R C is large compared to the reactance
of C C at 200kHz.
( )
What About a Resistor in the Compensation Network?
It is common practice in switching regulator design to add
a “zero” to the error amplifier compensation to increase
V C RIPPLE =
( R C )( G MA )( V IN ? V OUT )( ESR )( 1 . 21 )
( V IN )( L )( f )
) ( G MP )( G MA V OUT )( )( )
( 15 k ) ( 1 ? 10 ? 3 ) ( 10 ? 5 )( 0 . 1 )( 1 . 21 )
V C ( RIPPLE ) =
( ) ( )( ) 3
= 0 . 151 V
? 6
loop phase margin. This zero is created in the external
network in the form of a resistor (R C ) in series with the
compensation capacitor. Increasing the size of this resis-
tor generally creates better and better loop stability, but
there are two limitations on its value. First, the combina-
tion of output capacitor ESR and a large value for R C may
cause loop gain to stop rolling off altogether, creating a
gain margin problem. An approximate formula for R C
where gain margin falls to zero is:
R C ( Loop Gain = 1 = ESR 1 . 21
G MP = Transconductance of power stage = 1.5A/V
G MA = Error amplifier transconductance = 1(10 –3 )
ESR = Output capacitor ESR
1.21 = Reference voltage
With V OUT = 5V and ESR = 0.1 ? , a value of 27.5k for R C
would yield zero gain margin, so this represents an upper
limit. There is a second limitation however which has
nothing to do with theoretical small signal dynamics. This
resistor sets high frequency gain of the error amplifier,
including the gain at the switching frequency. If switching
frequency gain is high enough, output ripple voltage will
G MA = Error amplifier transconductance (1000 μ Mho)
If a computer simulation of the LT1576 showed that a
series compensation resistor of 15k gave best overall loop
response, with adequate gain margin, the resulting V C pin
ripple voltage with V IN = 10V, V OUT = 5V, ESR = 0.1 ? ,
L = 30 μ H, would be:
10 30 ? 10 200 ? 10
This ripple voltage is high enough to possibly create
subharmonic switching. In most situations a compromise
value (< 10k in this case) for the resistor gives acceptable
phase margin and no subharmonic problems. In other
cases, the resistor may have to be larger to get acceptable
phase response, and some means must be used to control
ripple voltage at the V C pin. The suggested way to do this
is to add a capacitor (C F ) in parallel with the R C /C C network
on the V C pin. Pole frequency for this capacitor is typically
set at one-fifth of switching frequency so that it provides
significant attenuation of switching ripple, but does not
add unacceptable phase shift at loop unity-gain frequency.
With R C = 15k,
=
appear at the V C pin with enough amplitude to muck up
proper operation of the regulator. In the marginal case,
C F =
5 5
( 2 π )( f )( R C ) 2 π ( 200 ? 10 3 ) ( 15 k )
= 265 pF
21
相关PDF资料
PDF描述
LT1576CS8-5 IC REG BUCK 5V 1.5A 8SOIC
VE-JV3-CZ-F3 CONVERTER MOD DC/DC 24V 25W
LT1576CS8-SYNC#PBF IC REG BUCK ADJ 1.5A 8SOIC
LT1576CS8-SYNC IC REG BUCK ADJ 1.5A 8SOIC
VE-JV3-CZ-F2 CONVERTER MOD DC/DC 24V 25W
相关代理商/技术参数
参数描述
LT1576CS8-5SYNC 功能描述:IC REG BUCK 5V 1.5A 8SOIC RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 标准包装:2,500 系列:- 类型:降压(降压) 输出类型:固定 输出数:1 输出电压:1.2V,1.5V,1.8V,2.5V 输入电压:2.7 V ~ 20 V PWM 型:- 频率 - 开关:- 电流 - 输出:50mA 同步整流器:是 工作温度:-40°C ~ 125°C 安装类型:表面贴装 封装/外壳:10-TFSOP,10-MSOP(0.118",3.00mm 宽)裸露焊盘 包装:带卷 (TR) 供应商设备封装:10-MSOP 裸露焊盘
LT1576CS8-5SYNC#PBF 功能描述:IC REG BUCK 5V 1.5A 8SOIC RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 标准包装:20 系列:SIMPLE SWITCHER® 类型:降压(降压) 输出类型:固定 输出数:1 输出电压:12V 输入电压:4 V ~ 60 V PWM 型:电压模式 频率 - 开关:52kHz 电流 - 输出:1A 同步整流器:无 工作温度:-40°C ~ 125°C 安装类型:通孔 封装/外壳:16-DIP(0.300",7.62mm) 包装:管件 供应商设备封装:16-DIP 其它名称:*LM2575HVN-12LM2575HVN-12
LT1576CS8-5SYNC#TR 功能描述:IC REG BUCK 5V 1.5A 8SOIC RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 标准包装:2,500 系列:- 类型:降压(降压) 输出类型:固定 输出数:1 输出电压:1.2V,1.5V,1.8V,2.5V 输入电压:2.7 V ~ 20 V PWM 型:- 频率 - 开关:- 电流 - 输出:50mA 同步整流器:是 工作温度:-40°C ~ 125°C 安装类型:表面贴装 封装/外壳:10-TFSOP,10-MSOP(0.118",3.00mm 宽)裸露焊盘 包装:带卷 (TR) 供应商设备封装:10-MSOP 裸露焊盘
LT1576CS8-5SYNC#TRPBF 功能描述:IC REG BUCK 5V 1.5A 8SOIC RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 标准包装:20 系列:SIMPLE SWITCHER® 类型:降压(降压) 输出类型:固定 输出数:1 输出电压:12V 输入电压:4 V ~ 60 V PWM 型:电压模式 频率 - 开关:52kHz 电流 - 输出:1A 同步整流器:无 工作温度:-40°C ~ 125°C 安装类型:通孔 封装/外壳:16-DIP(0.300",7.62mm) 包装:管件 供应商设备封装:16-DIP 其它名称:*LM2575HVN-12LM2575HVN-12
LT1576CS8-SYNC 功能描述:IC REG BUCK ADJ 1.5A 8SOIC RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 标准包装:2,500 系列:- 类型:升压(升压) 输出类型:可调式 输出数:1 输出电压:1.24 V ~ 30 V 输入电压:1.5 V ~ 12 V PWM 型:电流模式,混合 频率 - 开关:600kHz 电流 - 输出:500mA 同步整流器:无 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:8-SOIC(0.154",3.90mm 宽) 包装:带卷 (TR) 供应商设备封装:8-SOIC