参数资料
型号: LT1614IMS8
厂商: Linear Technology
文件页数: 6/16页
文件大小: 0K
描述: IC REG INV ADJ 0.5A 8MSOP
标准包装: 50
类型: 反相
输出类型: 可调式
输出数: 1
输出电压: 可调至 -24V
输入电压: 0.8 V ~ 5 V
PWM 型: 电流模式
频率 - 开关: 600kHz
电流 - 输出: 500mA
同步整流器:
工作温度: -40°C ~ 85°C
安装类型: 表面贴装
封装/外壳: 8-TSSOP,8-MSOP(0.118",3.00mm 宽)
包装: 管件
供应商设备封装: 8-MSOP
LT1614
OPERATIO
The LT1614 combines a current mode, fixed frequency
PWM architecture with a –1.23V reference to directly
regulate negative outputs. Operation can be best under-
stood by referring to the block diagram of Figure 2. Q1 and
Q2 form a bandgap reference core whose loop is closed
around the output of the converter. The driven reference
point is the lower end of resistor R4, which normally sits
at a voltage of –1.23V. As the load current changes, the
NFB pin voltage also changes slightly, driving the output
of g m amplifier A1. Switch current is regulated directly on
a cycle-to-cycle basis by A1’s output. The flip-flop is set at
the beginning of each cycle, turning on the switch. When
the summation of a signal representing switch current and
a ramp generator (introduced to avoid subharmonic oscil-
lations at duty factors greater than 50%) exceeds the V C
signal, comparator A2 changes stage, resetting the flip-
flop and turning off the switch. Output voltage decreases
(the magnitude increases) as switch current is increased.
The output, attenuated by external resistor divider R1 and
R2, appears at the NFB pin, closing the overall loop.
Frequency compensation is provided externally by a series
RC connected from the V C pin to ground. Typical values
are 100k and 1nF. Transient response can be tailored by
adjustment of these values.
As load current is decreased, the switch turns on for a
shorter period each cycle. If the load current is further
decreased, the converter will skip cycles to maintain
output voltage regulation.
The LT1614 can work in either of two topologies. The
simpler topology appends a capacitive level shift to a
boost converter, generating a negative output voltage,
which is directly regulated. The circuit schematic is de-
tailed in Figure 3. Only one inductor is required, and the
two diodes can be in a single SOT-23 package. Output
noise is the same as in a boost converter, because current
is delivered to the output only during the time when the
LT1614’s internal switch is on.
If D2 is replaced by an inductor, as shown in Figure 4, a
higher performance solution results. This converter topol-
ogy was developed by Professor S. Cuk of the California
Institute of Technology in the 1970s. A low ripple voltage
results with this topology due to inductor L2 in series with
the output. Abrupt changes in output capacitor current are
eliminated because the output inductor delivers current to
the output during both the off-time and the on-time of the
LT1614 switch. With proper layout and high quality output
capacitors, output ripple can be as low as 1mV P–P .
The operation of Cuk’s topology is shown in Figures 5
and 6. During the first switching phase, the LT1614’s
switch, represented by Q1, is on. There are two current
loops in operation. The first loop begins at input capacitor
C1, flows through L1, Q1 and back to C1. The second loop
flows from output capacitor C3, through L2, C2, Q1 and
back to C3. The output current from R LOAD is supplied by
L2 and C3. The voltage at node SW is V CESAT and at node
SWX the voltage is –(V IN + |V OUT |). Q1 must conduct both
L1 and L2 current. C2 functions as a voltage level shifter,
with an approximately constant voltage of (V IN + |V OUT |)
L1
C2
1 μ F
D2
across it.
L1
C2
1 μ F
L2
V IN
V IN
+
C1
V IN
LT1614
SW
D1
–V OUT
+
C1
V IN
LT1614
SW
D1
–V OUT
SHUTDOWN
SHDN
R1
SHUTDOWN
SHDN
R1
10Ok
V C
GND
NFB
R2
10k
C3
10Ok
V C
GND
NFB
R2
10k
C3
1nF
Figure 3. Direct Regulation of Negative Output
Using Boost Converter with Charge Pump
1614 F03
1nF
1614 F04
Figure 4. L2 Replaces D2 to Make Low Output Ripple
Inverting Topology. Coupled or Uncoupled Inductors Can
Be Used. Follow Phasing If Coupled for Best Results
6
相关PDF资料
PDF描述
LT1676IN8#PBF IC REG BUCK ADJ 0.7A 8DIP
MAX6868UK21D2L+T IC MPU SUPERVISOR SOT23-5
LT1676IN8 IC REG BUCK ADJ 0.7A 8DIP
50MH72.2MEFCTZ4X7 CAP ALUM 2.2UF 50V 20% RADIAL
LT1776IN8 IC REG BUCK ADJ 0.7A 8DIP
相关代理商/技术参数
参数描述
LT1614IMS8#PBF 功能描述:IC REG INV ADJ 0.5A 8MSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 标准包装:2,500 系列:- 类型:降压(降压) 输出类型:固定 输出数:1 输出电压:1.2V,1.5V,1.8V,2.5V 输入电压:2.7 V ~ 20 V PWM 型:- 频率 - 开关:- 电流 - 输出:50mA 同步整流器:是 工作温度:-40°C ~ 125°C 安装类型:表面贴装 封装/外壳:10-TFSOP,10-MSOP(0.118",3.00mm 宽)裸露焊盘 包装:带卷 (TR) 供应商设备封装:10-MSOP 裸露焊盘
LT1614IMS8#TR 功能描述:IC REG INV ADJ 0.5A 8MSOP RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 标准包装:2,500 系列:- 类型:降压(降压) 输出类型:固定 输出数:1 输出电压:1.2V,1.5V,1.8V,2.5V 输入电压:2.7 V ~ 20 V PWM 型:- 频率 - 开关:- 电流 - 输出:50mA 同步整流器:是 工作温度:-40°C ~ 125°C 安装类型:表面贴装 封装/外壳:10-TFSOP,10-MSOP(0.118",3.00mm 宽)裸露焊盘 包装:带卷 (TR) 供应商设备封装:10-MSOP 裸露焊盘
LT1614IMS8#TRPBF 功能描述:IC REG INV ADJ 0.5A 8MSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 标准包装:2,500 系列:- 类型:降压(降压) 输出类型:固定 输出数:1 输出电压:1.2V,1.5V,1.8V,2.5V 输入电压:2.7 V ~ 20 V PWM 型:- 频率 - 开关:- 电流 - 输出:50mA 同步整流器:是 工作温度:-40°C ~ 125°C 安装类型:表面贴装 封装/外壳:10-TFSOP,10-MSOP(0.118",3.00mm 宽)裸露焊盘 包装:带卷 (TR) 供应商设备封装:10-MSOP 裸露焊盘
LT1614IS8 功能描述:IC REG INV ADJ 0.5A 8SOIC RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 标准包装:2,500 系列:- 类型:降压(降压) 输出类型:固定 输出数:1 输出电压:1.2V,1.5V,1.8V,2.5V 输入电压:2.7 V ~ 20 V PWM 型:- 频率 - 开关:- 电流 - 输出:50mA 同步整流器:是 工作温度:-40°C ~ 125°C 安装类型:表面贴装 封装/外壳:10-TFSOP,10-MSOP(0.118",3.00mm 宽)裸露焊盘 包装:带卷 (TR) 供应商设备封装:10-MSOP 裸露焊盘
LT1614IS8#PBF 功能描述:IC REG INV ADJ 0.5A 8SOIC RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 标准包装:2,500 系列:- 类型:降压(降压) 输出类型:固定 输出数:1 输出电压:1.2V,1.5V,1.8V,2.5V 输入电压:2.7 V ~ 20 V PWM 型:- 频率 - 开关:- 电流 - 输出:50mA 同步整流器:是 工作温度:-40°C ~ 125°C 安装类型:表面贴装 封装/外壳:10-TFSOP,10-MSOP(0.118",3.00mm 宽)裸露焊盘 包装:带卷 (TR) 供应商设备封装:10-MSOP 裸露焊盘