参数资料
型号: LT1776IN8
厂商: LINEAR TECHNOLOGY CORP
元件分类: 稳压器
英文描述: RADIATION HARDENED HIGH EFFICIENCY, 5 AMP SWITCHING REGULATORS
中文描述: 1 A SWITCHING REGULATOR, 230 kHz SWITCHING FREQ-MAX, PDIP8
封装: 0.300 INCH, PLASTIC, DIP-8
文件页数: 10/20页
文件大小: 147K
代理商: LT1776IN8
10
LT1776
Input Voltage vs Operating Frequency Considerations
The absolute maximum input supply voltage for the LT1776
is specified at 60V. This is based solely on internal semi-
conductor junction breakdown effects. Due to internal
power dissipation, the actual maximum V
IN
achievable in
a particular application may be less than this.
A detailed theoretical basis for estimating internal power
loss is given in the section, Thermal Considerations. Note
that AC switching loss is proportional to both operating
frequency and output current. The majority of AC switch-
ing loss is also proportional to the
square
of input voltage.
For example, while the combination of V
IN
= 40V, V
OUT
=
5V at 500mA and f
OSC
= 200kHz may be easily achievable,
simultaneously raising V
IN
to 60V and f
OSC
to 400kHz is
not possible. Nevertheless, input voltage transientsup to
60V can usually be accommodated, assuming the result-
ing increase in internal dissipation is of insufficient time
duration to raise die temperature significantly.
A second consideration is controllability. A potential limi-
tation occurs with a high step-down ratio of V
IN
to V
OUT
,
as this requires a correspondingly narrow minimum switch
ON time. An approximate expression for this (assuming
continuous mode operation) is given as follows:
M
V
V
V
ON
OUT
F
)
IN OSC
int
=
+
where:
V
IN
= input voltage
V
OUT
= output voltage
V
F
= Schottky diode forward drop
f
OSC
= switching frequency
It is important to understand the nature of minimum
switch ON time as given in the data sheet. This test is
intended to mimic behavior under short-circuit condi-
tions. It is performed with the V
C
control voltage at its
clamp level (V
CL
) and uses a fixed resistive load from V
SW
to ground for simplicity. The resulting ON time behavior is
overconservative as a general operating design value for
two reasons. First, actual power supply application cir-
cuits present an inductive load to the V
SW
node. The
APPLICATIO
S I
FOR
ATIO
U
W
U
U
resulting ramping current behavior helps overdrive the
current comparator (current mode switching) and reduce
its propagation delay, hastening output switch turnoff.
Second, and more importantly, actual power supply op-
eration involves a feedback amplifier that adjusts the V
C
node control voltage to maintain proper output voltage. As
progressively shorter ON times are required, the feedback
loop acts to reduce V
C
, and the resulting overdrive further
reduces the propagation delay in the current comparator.
A suggested worst-case limit for minimum switch ON time
in actual operation is 350ns.
A potential controllability problem arises if the LT1776 is
called upon to produce an ON time shorter than its ability.
Feedback loop action will lower then reduce the V
C
control
voltage to the point where some sort of cycle-skipping or
odd/even cycle behavior is exhibited.
In summary:
1. Be aware that the simultaneous requirements of high
V
IN
, high I
OUT
and high f
OSC
may not be achievable in
practice due to internal dissipation. The Thermal Con-
siderations section offers a basis to estimate internal
power. In questionable cases a prototype supply should
be built and exercised to verify acceptable operation.
2. The simultaneous requirements of high V
IN
, low V
OUT
and high f
OSC
can result in an unacceptably short
minimum switch ON time. Cycle skipping and/or odd/
even cycle behavior will result although correct output
voltage is usually maintained.
Minimum Load Considerations
As discussed previously, a lightly loaded LT1776 with V
C
pin control voltage below the boost threshold will operate
in low dV/dt mode. This affords greater controllability at
light loads, as minimum t
ON
requirements are relaxed.
However, some users may be indifferent to pulse skipping
behavior, but instead may be concerned with maintaining
maximum possible efficiency at light loads. This require-
ment can be satisfied by forcing the part into Burst Mode
TM
operation. The use of an external comparator whose
Burst Mode is a trademark of Linear Technology Corporation.
相关PDF资料
PDF描述
LT1776CN8 RADIATION HARDENED HIGH EFFICIENCY, 5 AMP SWITCHING REGULATORS
LT1776CS8 RADIATION HARDENED HIGH EFFICIENCY, 5 AMP SWITCHING REGULATORS
LT1776I RADIATION HARDENED HIGH EFFICIENCY, 5 AMP SWITCHING REGULATORS
LT1776IS8 SPST, 150mA PC Mount Pushbutton
LT1776 Wide Input Range, High Efficiency, Step-Down Switching Regulator(宽输入范围,高效率,5V输出步降开关稳压器)
相关代理商/技术参数
参数描述
LT1776IN8#PBF 功能描述:IC REG BUCK ADJ 0.7A 8DIP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 标准包装:2,500 系列:- 类型:降压(降压) 输出类型:固定 输出数:1 输出电压:1.2V,1.5V,1.8V,2.5V 输入电压:2.7 V ~ 20 V PWM 型:- 频率 - 开关:- 电流 - 输出:50mA 同步整流器:是 工作温度:-40°C ~ 125°C 安装类型:表面贴装 封装/外壳:10-TFSOP,10-MSOP(0.118",3.00mm 宽)裸露焊盘 包装:带卷 (TR) 供应商设备封装:10-MSOP 裸露焊盘
LT1776IS8 功能描述:IC REG BUCK ADJ 0.7A 8SOIC RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 标准包装:2,500 系列:- 类型:降压(降压) 输出类型:固定 输出数:1 输出电压:1.2V,1.5V,1.8V,2.5V 输入电压:2.7 V ~ 20 V PWM 型:- 频率 - 开关:- 电流 - 输出:50mA 同步整流器:是 工作温度:-40°C ~ 125°C 安装类型:表面贴装 封装/外壳:10-TFSOP,10-MSOP(0.118",3.00mm 宽)裸露焊盘 包装:带卷 (TR) 供应商设备封装:10-MSOP 裸露焊盘
LT1776IS8#PBF 功能描述:IC REG BUCK ADJ 0.7A 8SOIC RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 标准包装:250 系列:- 类型:降压(降压) 输出类型:固定 输出数:1 输出电压:1.2V 输入电压:2.05 V ~ 6 V PWM 型:电压模式 频率 - 开关:2MHz 电流 - 输出:500mA 同步整流器:是 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:6-UFDFN 包装:带卷 (TR) 供应商设备封装:6-SON(1.45x1) 产品目录页面:1032 (CN2011-ZH PDF) 其它名称:296-25628-2
LT1776IS8#PBF 制造商:Linear Technology 功能描述:IC STEP-DOWN REGULATOR 8-SOIC
LT1776IS8#TR 功能描述:IC REG BUCK ADJ 0.7A 8SOIC RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 标准包装:2,500 系列:- 类型:降压(降压) 输出类型:固定 输出数:1 输出电压:1.2V,1.5V,1.8V,2.5V 输入电压:2.7 V ~ 20 V PWM 型:- 频率 - 开关:- 电流 - 输出:50mA 同步整流器:是 工作温度:-40°C ~ 125°C 安装类型:表面贴装 封装/外壳:10-TFSOP,10-MSOP(0.118",3.00mm 宽)裸露焊盘 包装:带卷 (TR) 供应商设备封装:10-MSOP 裸露焊盘