参数资料
型号: LT6105HMS8#TRPBF
厂商: Linear Technology
文件页数: 7/20页
文件大小: 0K
描述: IC AMP R-R CURRENT SENSE 8-MSOP
标准包装: 2,500
放大器类型: 电流检测
电路数: 1
转换速率: 2 V/µs
-3db带宽: 100kHz
电压 - 输入偏移: 100µV
电流 - 电源: 300µA
电流 - 输出 / 通道: 1mA
电压 - 电源,单路/双路(±): 2.85 V ~ 36 V,±1.425 V ~ 18 V
工作温度: -40°C ~ 125°C
安装类型: 表面贴装
封装/外壳: 8-TSSOP,8-MSOP(0.118",3.00mm 宽)
供应商设备封装: 8-MSOP
包装: 带卷 (TR)
LT6105
15
6105fa
Error Sources
The current sense system uses an amplier, current mirrors
and external resistors to apply gain and level shifting. The
output is then dependent on the matching characteristics
of the current mirrors, characteristics of the amplier such
as gain and input offset, as well as matching of external
resistors. Ideally, the circuit output is:
VV
R
VI
R
OUT
SENSE
OUT
IN
SENSE
==
;
In this case, the only error is due to resistor mismatch,
which provides an error in gain only. Mismatch in the
internal current mirror adds to gain error but is trimmed
to less than 0.3%. Offset voltage and sense input current
are the main cause of any additional error.
Error Due to Input Offset Voltage
Dynamic range is inversely proportional to the input offset
voltage. Dynamic range can be thought of as the maximum
VSENSE divided by VOS. The offset voltage of the LT6105
is typically only ±100μV.
Error Due to Sense Input Offset Current
Input offset current or mismatches in input bias current will
introduce an additional input offset voltage term. Typical
input offset current is 0.05μA. Lower values of RIN will
keep this error to a minimum. For example, if RIN = 100Ω,
then the additional offset is 5μV.
Output Current Limitations Due to Power Dissipation
The LT6105 can deliver up to 1mA continuous current to
the output pin. This output current, IOUT, is the mirrored
current which ows through RIN2 and enters the current
sense amp via the +IN pin for V–IN > 1.6V, and exits out of
–IN through RIN1 for V–IN < 1.6V. The total power dissipa-
tion due to input currents, PIN, and the dissipation due to
internal mirrored currents, PQ:
PTOTAL = PIN + PQ
PIN = (V+IN) IRIN2; V–IN > 1.6V
or
PIN = (V+ – (V–IN)) IRIN1; V–IN < 1.6V
Since the current exiting –IN is coming from V+, the voltage
is V+ – V–IN. Taking the worst case V–IN = 0V, the above
equation becomes:
PIN V+ IRIN1, for V–IN < 1.6V.
The power dissipated due to internal mirrored currents:
PQ = 2 IOUT V+
The factor of 2 is the result of internal current shifting and
1:1 mirroring.
At maximum supply and maximum output current, the
total power dissipation can exceed 100mW. This will
cause signicant heating of the LT6105 die. In order to
prevent damage to the LT6105, the maximum expected
dissipation in each application should be calculated. This
number can be multiplied by the
θJA value listed in the Pin
Conguration section to nd the maximum expected die
temperature. This must not be allowed to exceed 150°C,
or performance may be degraded. As an example, if an
LT6105 in the MSOP package is to be run at VS+ = 44V and
V+ = 36V with 1mA output current at 80°C ambient:
PQ(MAX) = 2 IOUT(MAX) V+ = PQ(MAX) = 72mW
PIN(MAX) = IRIN2(MAX) V+IN(MAX) = 44mW
TRISE = θJA PTOTAL(MAX)
TMAX = TAMBIENT + TRISE
TMAX must be < 150°C
PTOTAL(MAX) = 116mW and the maximum die temperature
will be 109°C. If this same circuit must run at 125°C ambi-
ent, the maximum die temperature will increase to 150°C.
Note that supply current, and therefore PQ, is proportional
to temperature. Refer to the Typical Performance Charac-
teristics section. In this condition, the maximum output
current should be reduced to avoid device damage. The
DCB package, on the other hand, has a lower
θJA and
subsequently, a lower die temperature increase than the
MSOP. With the same condition as above, the DCB will
rise only 7.5°C to 87.5°C and 132.5°C, respectively.
It is important to note that the LT6105 has been designed
to provide at least 1mA to the output when required, and
can deliver more under large VSENSE conditions. Care must
be taken to limit the maximum output current by proper
choice of sense resistor and input resistors.
APPLICATIONS INFORMATION
相关PDF资料
PDF描述
LT6106HS5#TRPBF IC AMP CURRENT SENSE TSOT23-5
LT6107MPS5#TRPBF IC AMP CURRENT SENSE HS TSOT23-5
LT6200IS8-10#TRPBF IC OP AMP 1.6GHZ R-R I/O 8-SOIC
LT6203IMS8#TRPBF IC OPAMP R-R INOUT DUAL LP 8MSOP
LT6211CDD#TRPBF IC AMP CURR FDBK DUAL R-R 10DFN
相关代理商/技术参数
参数描述
LT6105IDCB#PBF 制造商:Linear Technology 功能描述:SP Amp Current Sense Amp Single 36V 6-Pin DFN EP 制造商:Linear Technology 功能描述:SC-Amps/Current Sense, Cut Tape Side Current Sense wiht -03V to 44v Common Mo
LT6105IDCB#TRMPBF 功能描述:IC AMP CURRENT SENSE R-R 6-DFN RoHS:是 类别:集成电路 (IC) >> Linear - Amplifiers - Instrumentation 系列:- 标准包装:2,500 系列:- 放大器类型:通用 电路数:1 输出类型:满摆幅 转换速率:0.11 V/µs 增益带宽积:350kHz -3db带宽:- 电流 - 输入偏压:4nA 电压 - 输入偏移:20µV 电流 - 电源:260µA 电流 - 输出 / 通道:20mA 电压 - 电源,单路/双路(±):2.7 V ~ 36 V,±1.35 V ~ 18 V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:8-SOIC(0.154",3.90mm 宽) 供应商设备封装:8-SO 包装:带卷 (TR)
LT6105IDCB#TRPBF 功能描述:IC AMP CURRENT SENSE R-R 6-DFN RoHS:是 类别:集成电路 (IC) >> Linear - Amplifiers - Instrumentation 系列:- 标准包装:2,500 系列:- 放大器类型:通用 电路数:1 输出类型:满摆幅 转换速率:0.11 V/µs 增益带宽积:350kHz -3db带宽:- 电流 - 输入偏压:4nA 电压 - 输入偏移:20µV 电流 - 电源:260µA 电流 - 输出 / 通道:20mA 电压 - 电源,单路/双路(±):2.7 V ~ 36 V,±1.35 V ~ 18 V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:8-SOIC(0.154",3.90mm 宽) 供应商设备封装:8-SO 包装:带卷 (TR)
LT6105IDCB-TRMPBF 制造商:LINER 制造商全称:Linear Technology 功能描述:Precision, Extended Input Range Current Sense Amplifi er
LT6105IDCB-TRPBF 制造商:LINER 制造商全称:Linear Technology 功能描述:Precision, Extended Input Range Current Sense Amplifi er