参数资料
型号: LTC1266CS#TR
厂商: Linear Technology
文件页数: 10/20页
文件大小: 0K
描述: IC REG CTRLR BST PWM CM 16-SOIC
标准包装: 2,500
PWM 型: 电流模式
输出数: 1
频率 - 最大: 400kHz
占空比: 100%
电源电压: 3.5 V ~ 18 V
降压:
升压:
回扫:
反相:
倍增器:
除法器:
Cuk:
隔离:
工作温度: 0°C ~ 70°C
封装/外壳: 16-SOIC(0.154",3.90mm 宽)
包装: 带卷 (TR)
LTC1266
LTC1266-3.3/LTC1266-5
APPLICATIO S I FOR ATIO
) )
1 V OUT
) )
t OFF = 1.3 ? 10 4 ? C T ?
V OUT
V IN – V OUT
As the operating frequency is increased the gate charge
losses will be higher, reducing efficiency (see Efficiency
Considerations). The complete expression for operating
frequency of the circuit in Figure 1 is given by:
f= 1–
t OFF V IN
where:
V REG
V OUT
V REG is the desired output voltage (i.e., 5V, 3.3V). V OUT is the
measured output voltage. Thus V REG /V OUT = 1 in regulation.
Once the frequency has been set by C T , the inductor L
must be chosen to provide no more than 25mV/R SENSE
of peak-to-peak inductor ripple current. This results in
a minimum required inductor value of:
L MIN = 5.1 ? 10 5 ? R SENSE ? C T ? V REG
As the inductor value is increased from the minimum
value, the ESR requirements for the output capacitor
are eased at the expense of efficiency. If too small an
inductor is used, the inductor current will decrease past
zero and change polarity. A consequence of this is that
the LTC1266 series may not enter Burst Mode operation
and efficiency will be slightly degraded at low currents.
Inductor Core Selection
Once the minimum value for L is known, the type of
inductor must be selected. The highest efficiency will be
obtained using ferrite, Kool M μ ? on molypermalloy (MPP)
cores. Lower cost powdered iron cores provide suitable
performance but cut efficiency by 3% to 7%. Actual core
loss is independent of core size for a fixed inductor value,
but it is very dependent on inductance selected. As induc-
tance increases, core losses go down. Unfortunately,
increased inductance requires more turns of wire and
therefore copper losses increase.
Ferrite designs have very low core loss, so design goals
can concentrate on copper loss and preventing satura-
tion. Ferrite core material saturates “hard,” which means
that inductance collapses abruptly when the peak design
Kool M μ is a registered trademark of Magnetics, Inc.
10
current is exceeded. This results in an abrupt increase in
inductor ripple current and consequent output voltage
ripple which can cause Burst Mode operation to be falsely
triggered. Do not allow the core to saturate!
Kool M μ is a very good, low loss core material for toroids,
with a “soft” saturation characteristic. Molypermalloy is
slightly more efficient at high (> 200kHz) switching fre-
quency. Toroids are very space efficient, especially when
you can use several layers of wire. Because they generally
lack a bobbin, mounting is more difficult. However, new
designs for surface mount are available from Coiltronics
and Beckman Industrial Corp. which do not increase the
height significantly.
Power MOSFET and D1 Selection
Two external power MOSFETs must be selected for use
with the LTC1266 series: either a P-channel MOSFET or an
N-channel MOSFET for the main switch and an N-channel
MOSFET for the synchronous switch. The main selection
criteria for the power MOSFETs are the type of MOSFET,
threshold voltage V GS(TH) and on-resistance R DS(ON) .
The cost and maximum output current determine the type
of MOSFET for the topside switch. N-channel MOSFETs
have the advantage of lower cost and lower R DS(ON) at the
expense of slightly increased circuit complexity. For lower
current applications where the losses due to R DS(ON) are
small, a P-channel MOSFET is recommended due to the
lower circuit complexity. However, at load currents in
excess of 3A where the R DS(ON) becomes a significant
portion of the total power loss, an N-channel is strongly
recommended to maximize efficiency.
The maximum output current I MAX determines the R DS(ON)
requirement for the two MOSFETs. When the LTC1266
series is operating in continuous mode, the simplifying
assumption can be made that one of the two MOSFETs is
always conducting the average load current. The duty
cycles for the two MOSFETs are given by:
Topside Duty Cycle =
V IN
Bottom-Side Duty Cycle =
V IN
相关PDF资料
PDF描述
LTC1266CS-3.3#TRPBF IC REG CTRLR BST PWM CM 16-SOIC
LTC1266CS-3.3#TR IC REG CTRLR BST PWM CM 16-SOIC
VE-JWD-EY-F1 CONVERTER MOD DC/DC 85V 50W
LTC1266CS-5#TRPBF IC REG CTRLR BST PWM CM 16-SOIC
LTC1266CS-5#TR IC REG CTRLR BST PWM CM 16-SOIC
相关代理商/技术参数
参数描述
LTC1266IS 功能描述:IC REG CTRLR BST PWM CM 16-SOIC RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:2,500 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:500kHz 占空比:96% 电源电压:4 V ~ 36 V 降压:无 升压:是 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:24-WQFN 裸露焊盘 包装:带卷 (TR)
LTC1266IS#PBF 功能描述:IC REG CTRLR BST PWM CM 16-SOIC RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:2,500 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:500kHz 占空比:96% 电源电压:4 V ~ 36 V 降压:无 升压:是 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:24-WQFN 裸露焊盘 包装:带卷 (TR)
LTC1266IS#TR 功能描述:IC REG CTRLR BST PWM CM 16-SOIC RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:2,500 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:500kHz 占空比:96% 电源电压:4 V ~ 36 V 降压:无 升压:是 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:24-WQFN 裸露焊盘 包装:带卷 (TR)
LTC1266IS#TRPBF 功能描述:IC REG CTRLR BST PWM CM 16-SOIC RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:2,500 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:500kHz 占空比:96% 电源电压:4 V ~ 36 V 降压:无 升压:是 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:24-WQFN 裸露焊盘 包装:带卷 (TR)
LTC1266IS-3.3 功能描述:IC REG CTRLR BST PWM CM 16-SOIC RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:2,000 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:1MHz 占空比:50% 电源电压:9 V ~ 10 V 降压:无 升压:是 回扫:是 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 85°C 封装/外壳:8-TSSOP(0.173",4.40mm 宽) 包装:带卷 (TR)