参数资料
型号: LTC1474CMS8
厂商: Linear Technology
文件页数: 8/20页
文件大小: 0K
描述: IC REG BUCK ADJ 0.75A 8MSOP
标准包装: 50
类型: 降压(降压)
输出类型: 可调式
输出数: 1
输出电压: 可调
输入电压: 3 V ~ 18 V
PWM 型: Burst Mode?
电流 - 输出: 750mA
同步整流器:
工作温度: 0°C ~ 70°C
安装类型: 表面贴装
封装/外壳: 8-TSSOP,8-MSOP(0.118",3.00mm 宽)
包装: 管件
供应商设备封装: 8-MSOP
LTC1474/LTC1475
APPLICATIO N S I N FOR M ATIO N
If the L MIN calculated is not practical, a larger I PEAK should
be used. Although the above equation provides the mini-
mum, better performance (efficiency, line/load regulation,
noise) is usually gained with higher values. At higher
inductances, peak current and frequency decrease (im-
proving efficiency) and inductor ripple current decreases
(improving noise and line/load regulation). For a given
inductor type, however, as inductance is increased, DC
resistance (DCR) increases, increasing copper losses,
and current rating decreases, both effects placing an
upper limit on the inductance. The recommended range of
inductances for small surface mount inductors as a func-
tion of peak current is shown in Figure 3. The values in this
range are a good compromise between the trade-offs
discussed above. If space is not a premium, inductors with
larger cores can be used, which extends the recom-
mended range of Figure 3 to larger values.
1000
500
100
section, increased inductance requires more turns of wire
and therefore copper losses will increase.
Ferrite and Kool M μ designs have very low core loss and
are preferred at high switching frequencies, so design
goals can concentrate on copper loss and preventing
saturation. Ferrite core material saturates “hard,” which
means that inductance collapses abruptly when the peak
design current is exceeded. This results in an abrupt
increase in inductor current above I PEAK and consequent
increase in voltage ripple. Do not allow the core to satu-
rate! Coiltronics, Coilcraft, Dale and Sumida make high
performance inductors in small surface mount packages
with low loss ferrite and Kool M μ cores and work well in
LTC1474/LTC1475 regulators.
Catch Diode Selection
The catch diode carries load current during the off-time.
The average diode current is therefore dependent on the
P-channel switch duty cycle. At high input voltages the
diode conducts most of the time. As V IN approaches V OUT
the diode conducts only a small fraction of the time. The
most stressful condition for the diode is when the output
is short-circuited. Under this condition, the diode must
safely handle I PEAK at close to 100% duty cycle.
To maximize both low and high current efficiency, a fast
switching diode with low forward drop and low reverse
leakage should be used. Low reverse leakage current is
50
10
100
1000
critical to maximize low current efficiency since the leak-
PEAK INDUCTOR CURRENT (mA)
1474/75 F03
Figure 3. Recommended Inductor Values
Inductor Core Selection
Once the value of L is known, the type of inductor must be
selected. High efficiency converters generally cannot
age can potentially approach the magnitude of the LTC1474/
LTC1475 supply current. Low forward drop is critical for
high current efficiency since loss is proportional to for-
ward drop. These are conflicting parameters (see Table 1),
but a good compromise is the MBR0530 0.5A Schottky
diode specified in the application circuits.
Table 1. Effect of Catch Diode on Performance
afford the core loss found in low cost powdered iron cores,
forcing the use of more expensive ferrite, molypermalloy
or Kool M μ ? cores. Actual core loss is independent of core
size for a fixed inductor value, but is very dependent on
inductance selected. As inductance increases, core losses
DIODE (D1)
BAS85
MBR0530
MBRS130
LEAKAGE
200nA
1 μ A
20 μ A
FORWARD NO LOAD
DROP SUPPLY CURRENT EFFICIENCY*
0.6V 9.7 μ A 77.9%
0.4V 10 μ A 83.3%
0.3V 16 μ A 84.6%
go down. Unfortunately, as discussed in the previous
*Figure 1 circuit with V IN = 15V, I OUT = 0.1A
Kool M μ is a registered trademark of Magnetics, Inc.
8
相关PDF资料
PDF描述
ASC13DRTS CONN EDGECARD 26POS .100 DIP SLD
VE-221-EY-S CONVERTER MOD DC/DC 12V 50W
ASC13DRES CONN EDGECARD 26POS .100 EYELET
LTC3603EUF#TRPBF IC REG BUCK SYNC ADJ 2.5A 20QFN
V48C8C150BL CONVERTER MOD DC/DC 8V 150W
相关代理商/技术参数
参数描述
LTC1474CMS8#PBF 功能描述:IC REG BUCK ADJ 0.75A 8MSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 产品培训模块:MIC23xxx HyperLight Load™ Regulators 标准包装:5,000 系列:HyperLight Load® 类型:降压(降压) 输出类型:固定 输出数:1 输出电压:1.8V 输入电压:2.7 V ~ 5.5 V PWM 型:混合物 频率 - 开关:4MHz 电流 - 输出:2A 同步整流器:是 工作温度:-40°C ~ 125°C 安装类型:表面贴装 封装/外壳:8-VFDFN 裸露焊盘,8-MLF? 包装:带卷 (TR) 供应商设备封装:8-MLF?(2x2) 产品目录页面:1094 (CN2011-ZH PDF) 其它名称:576-3303-2
LTC1474CMS8#TR 功能描述:IC REG BUCK ADJ 0.75A 8MSOP RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 标准包装:2,500 系列:- 类型:降压(降压) 输出类型:固定 输出数:1 输出电压:1.2V,1.5V,1.8V,2.5V 输入电压:2.7 V ~ 20 V PWM 型:- 频率 - 开关:- 电流 - 输出:50mA 同步整流器:是 工作温度:-40°C ~ 125°C 安装类型:表面贴装 封装/外壳:10-TFSOP,10-MSOP(0.118",3.00mm 宽)裸露焊盘 包装:带卷 (TR) 供应商设备封装:10-MSOP 裸露焊盘
LTC1474CMS8#TRPBF 功能描述:IC REG BUCK ADJ 0.75A 8MSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 标准包装:2,500 系列:- 类型:降压(降压) 输出类型:固定 输出数:1 输出电压:1.2V,1.5V,1.8V,2.5V 输入电压:2.7 V ~ 20 V PWM 型:- 频率 - 开关:- 电流 - 输出:50mA 同步整流器:是 工作温度:-40°C ~ 125°C 安装类型:表面贴装 封装/外壳:10-TFSOP,10-MSOP(0.118",3.00mm 宽)裸露焊盘 包装:带卷 (TR) 供应商设备封装:10-MSOP 裸露焊盘
LTC1474CMS8-3.3 功能描述:IC REG BUCK 3.3V 0.75A 8MSOP RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 标准包装:2,500 系列:- 类型:降压(降压) 输出类型:固定 输出数:1 输出电压:1.2V,1.5V,1.8V,2.5V 输入电压:2.7 V ~ 20 V PWM 型:- 频率 - 开关:- 电流 - 输出:50mA 同步整流器:是 工作温度:-40°C ~ 125°C 安装类型:表面贴装 封装/外壳:10-TFSOP,10-MSOP(0.118",3.00mm 宽)裸露焊盘 包装:带卷 (TR) 供应商设备封装:10-MSOP 裸露焊盘
LTC1474CMS8-3.3#PBF 功能描述:IC REG BUCK 3.3V 0.75A 8MSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 标准包装:250 系列:- 类型:降压(降压) 输出类型:固定 输出数:1 输出电压:1.2V 输入电压:2.05 V ~ 6 V PWM 型:电压模式 频率 - 开关:2MHz 电流 - 输出:500mA 同步整流器:是 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:6-UFDFN 包装:带卷 (TR) 供应商设备封装:6-SON(1.45x1) 产品目录页面:1032 (CN2011-ZH PDF) 其它名称:296-25628-2