参数资料
型号: LTC1502CMS8-3.3#PBF
厂商: Linear Technology
文件页数: 6/8页
文件大小: 0K
描述: IC REG SWITCHED CAP 3.3V 8MSOP
标准包装: 50
类型: 切换式电容器(充电泵)
输出类型: 固定
输出数: 1
输出电压: 3.3V
输入电压: 0.9 V ~ 1.8 V
频率 - 开关: 500kHz
电流 - 输出: 10mA
同步整流器:
工作温度: 0°C ~ 70°C
安装类型: 表面贴装
封装/外壳: 8-TSSOP,8-MSOP(0.118",3.00mm 宽)
包装: 管件
供应商设备封装: 8-MSOP
LTC1502-3.3
APPLICATIO N S I N FOR M ATIO N
1
2
C2
C1 +
V OUT
C3 +
8
7
Output Ripple
Normal LTC1502-3.3 operation produces voltage ripple
100 ?
3
4
LTC1502-3.3
C1 – /SHDN C3 –
GND V IN
6
5
10 μ F
on the V OUT pin. Output voltage ripple is required for
regulation. Low frequency ripple exists due to the hyster-
esis in the sense comparator and propagation
ON OFF V CTRL
1502-3.3 F01
Figure 1. Pull-Down Circuitry for Shutdown
will force a logic high on the C1 – /SHDN pin and put the part
back into active mode. If no external pull-down is present
during the Hi-Z interval, the internal pull-up current will
maintain a logic high on the C1 – /SHDN pin thereby keep-
ing the part in active mode.
The shutdown feature can be used to prevent charge pump
switching during noise sensitive intervals. Since the charge
pump oscillator is disabled during shutdown, output switch-
ing noise can be eliminated while the external pull-down is
active. The LTC1502-3.3 takes between 20 μ s and 50 μ s to
switch from shutdown to active mode once the pull-down
device has been turned off (assuming a 100pF external
capacitance to GND on the C1 – /SHDN pin). A 100k pull-up
resistor from V IN to C1 – /SHDN will speed up this transition
by a factor of five at the expense of 10 μ A or so of additional
shutdown current. To maintain regulation, a sufficiently
large output capacitor must be used to prevent excessive
V OUT droop while the charge pump is in shutdown. Also,
there must be adequate time for the charge pump to
recharge the output capacitor while the part is active. In
other words, the average load current must be low enough
for the LTC1502-3.3 to maintain a 3.3V output while the
part is active.
delays in the charge pump enable/disable circuits. High
frequency ripple is also present mainly from the ESR
(equivalent series resistance) in the output capacitor. Typi-
cal output ripple (V IN = 1.25V) under maximum load is
50mV peak-to-peak with a low ESR 10 μ F output capacitor.
The magnitude of the ripple voltage depends on several
factors. High input voltages increase the output ripple
since more charge is delivered to C OUT per charging cycle.
Large output current load and/or a small output capacitor
(<10 μ F) results in higher ripple due to higher output
voltage dV/dt. High ESR capacitors (ESR > 0.5 ? ) on the
output pin cause high frequency voltage spikes on V OUT
with every clock cycle.
There are several ways to reduce the output voltage ripple.
A larger C OUT capacitor (22 μ F or greater) will reduce both
the low and high frequency ripple due to the lower C OUT
charging and discharging dV/dt and the lower ESR typi-
cally found with higher value (larger case size) capacitors.
A low ESR ceramic output capacitor will minimize the high
frequency ripple, but will not reduce the low frequency
ripple unless a high capacitance value is chosen. A reason-
able compromise is to use a 10 μ F to 22 μ F tantalum
capacitor in parallel with a 1 μ F to 3.3 μ F ceramic capacitor
on V OUT to reduce both the low and high frequency ripple.
An RC filter may also be used to reduce high frequency
voltage spikes (see Figure 2).
Capacitor Selection
For best performance, it is recommended that low ESR
V OUT
LTC1502-3.3
8
+
10 μ F
TANTALUM
1 μ F
CERAMIC
V OUT
2 ?
+
+
capacitors be used for C IN , C2 and C OUT to reduce noise
and ripple. The C IN , C2 and C OUT capacitors should be
either ceramic or tantalum and should be 10 μ F or greater.
If the input source impedance is very low (< 0.5 ? ), C IN
may not be needed. Ceramic capacitors are recommended
for the flying capacitors C1 and C3 with values of 0.47 μ F
to 2.2 μ F. Smaller values may be used in low output current
applications (e.g., I OUT < 1mA).
6
8
V OUT V OUT
LTC1502-3.3 10 μ F 10 μ F
1502-3.3 F02
Figure 2. Output Ripple Reduction Techniques
相关PDF资料
PDF描述
EBM43DCTI CONN EDGECARD 86POS DIP .156 SLD
ABM10DSUI CONN EDGECARD 20POS .156 DIP SLD
LTC1502CMS8-3.3 IC REG SWITCHED CAP 3.3V 8MSOP
ABM10DRUI CONN EDGECARD 20POS .156 DIP SLD
CGS602T250W4C CAP ALUM 6000UF 250V SCREW
相关代理商/技术参数
参数描述
LTC1502CS8-3.3 功能描述:IC REG SWITCHED CAP 3.3V 8SOIC RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 标准包装:2,500 系列:- 类型:升压(升压) 输出类型:可调式 输出数:1 输出电压:1.24 V ~ 30 V 输入电压:1.5 V ~ 12 V PWM 型:电流模式,混合 频率 - 开关:600kHz 电流 - 输出:500mA 同步整流器:无 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:8-SOIC(0.154",3.90mm 宽) 包装:带卷 (TR) 供应商设备封装:8-SOIC
LTC1502CS8-3.3#PBF 功能描述:IC REG SWITCHED CAP 3.3V 8SOIC RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 产品培训模块:MIC23xxx HyperLight Load™ Regulators 标准包装:5,000 系列:HyperLight Load® 类型:降压(降压) 输出类型:固定 输出数:1 输出电压:1.8V 输入电压:2.7 V ~ 5.5 V PWM 型:混合物 频率 - 开关:4MHz 电流 - 输出:2A 同步整流器:是 工作温度:-40°C ~ 125°C 安装类型:表面贴装 封装/外壳:8-VFDFN 裸露焊盘,8-MLF? 包装:带卷 (TR) 供应商设备封装:8-MLF?(2x2) 产品目录页面:1094 (CN2011-ZH PDF) 其它名称:576-3303-2
LTC1502CS8-3.3#TR 功能描述:IC REG SWITCHED CAP 3.3V 8SOIC RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 标准包装:2,500 系列:- 类型:升压(升压) 输出类型:可调式 输出数:1 输出电压:1.24 V ~ 30 V 输入电压:1.5 V ~ 12 V PWM 型:电流模式,混合 频率 - 开关:600kHz 电流 - 输出:500mA 同步整流器:无 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:8-SOIC(0.154",3.90mm 宽) 包装:带卷 (TR) 供应商设备封装:8-SOIC
LTC1502CS8-3.3#TRPBF 功能描述:IC REG SWITCHED CAP 3.3V 8SOIC RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 标准包装:20 系列:SIMPLE SWITCHER® 类型:降压(降压) 输出类型:固定 输出数:1 输出电压:12V 输入电压:4 V ~ 60 V PWM 型:电压模式 频率 - 开关:52kHz 电流 - 输出:1A 同步整流器:无 工作温度:-40°C ~ 125°C 安装类型:通孔 封装/外壳:16-DIP(0.300",7.62mm) 包装:管件 供应商设备封装:16-DIP 其它名称:*LM2575HVN-12LM2575HVN-12
LTC1502IMS8-3.3 功能描述:IC REG SWITCHED CAP 3.3V 8MSOP RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 标准包装:2,500 系列:- 类型:升压(升压) 输出类型:可调式 输出数:1 输出电压:1.24 V ~ 30 V 输入电压:1.5 V ~ 12 V PWM 型:电流模式,混合 频率 - 开关:600kHz 电流 - 输出:500mA 同步整流器:无 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:8-SOIC(0.154",3.90mm 宽) 包装:带卷 (TR) 供应商设备封装:8-SOIC