参数资料
型号: LTC1531
厂商: Linear Technology Corporation
英文描述: Self-Powered Isolated Comparator
中文描述: 自供电隔离比较
文件页数: 9/16页
文件大小: 266K
代理商: LTC1531
9
LTC1531
APPLICATIO
S I
N
FOR
ATIO
U
The Remote Light-Controlled Switch (Figure 7) is similar
to the Isolated Thermistor Temperature Controller. The
thermistor is replaced with a Cadmium Light Sensor.
The Isolated Switch Control (Figure 8) is also similar,
where a low voltage switch is isolated from the AC power
control. Here, a charge pump using the 1
μ
F nonpolar
capacitor and diodes are used for powering the LTC1531.
The Isolated Voltage Sense circuit (Figure 9) uses the
three-state CMPOUT pin in a delta-sigma configuration.
Here, the time constant of R1C1 is increased by the
effective duty cycle of CMPOUT ON to OFF time. At a 300Hz
sample rate and a typical ON time of 108
μ
s, the time
constant is:
(1M 0.22
μ
F)/(300Hz 108
μ
s)
6.6sec
The input range is 0V to 2.5V set by the V
REG
output
voltage. The output is recovered using a rail-to-rail op
amp, LT1490, averaging circuit with a 10sec time con-
stant. The output range is 0V to V
CC
output for a 0V to V
REG
input range.
The Isolated Potentiometer Transducer Sense circuit
(Figure 10) uses the same principle as the Isolated Voltage
Sense circuit to provide a 0V to V
CC
output proportional to
the potentiometer sensor input.
The Isolated Thermocouple Voltage circuit (Figure 11)
again uses the delta-sigma approach to translate a ther-
mocouple temperature into a 0V to V
CC
output. Addition-
ally, a micropower op amp, the LT1495, is used to provide
a continuous voltage amplification of the thermocouple.
The LT1389 with the thermistor bridge provides cold
junction compensation over a 0
°
C to 60
°
C temperature
range within
±
0.5
°
C. The op amp gain is set to give the K-
type thermocouple a 0
°
C to 200
°
C range which translates
to a 0V to V
CC
output signal. Reducing R3 will increase the
temperature sensing range.
The Over Temperature Detect circuit (Figure 12) uses the
same continuous micropower cold junction compensa-
tion circuit as in the Isolated Thermocouple Voltage cir-
cuit. In this case, the comparator’s minus input is set to
1.25V, which corresponds to 100
°
C as set by the LT1495
W
U
op amp gain. When the thermocouple exceeds 100
°
C,
V
TRIP
goes high.
The Isolated Battery Cell Monitor circuit (Figure 13) uses
LTC1531 isolation to both float the individual grounds on
the isolated comparator and isolate the battery from the
logic outputs, CELL1, CELL2, ... In this application, R1 and
R2 (R3 and R4) divide the 2.5V reference down to 0.89V,
while the cell voltage is divided in half by connecting V1 to
the cell and V2 to 0V. Hence, when the cell voltage drops
below 1.786V, CELL1 goes high. Likewise for additional
cells with additional LTC1531s.
The Isolated Window Comparator circuit (Figure 14) uses
two LTC1531s and a logic gate to provide isolated window
comparisons. In this circuit, the first LTC1531, V
HIGH
,
does the comparison:
V1 – V3 > V4 – V2
or
(0V – X V
REG
) > (V
IN–
– V
IN+
)
or
X V
REG
< (V
IN+
– V
IN–
)
where X = R2/(R2 + R1).
The second LTC1531, V
LOW
, does the comparison:
(–X V
REG
) > (V
IN+
– V
IN–
)
When (V
IN+
– V
IN–
) is less than –X V
REG
, V
LOW
goes high
and when (V
IN+
– V
IN–
) is greater than X V
REG
, V
HIGH
goes high. In between –X V
REG
and +X V
REG
, V
WINDOW
is high. Therefore, the window width is 2 X V
REG
.
The AC Line Overcurrent Detect circuit (Figure 15) uses
the micropower op amps, the quad LTC1496, to peak
detect the voltage across a sense resistor in series with an
AC load. The two amplifiers connected to R
SENSE
act as
half-wave rectifiers because their outputs cannot swing
below ground. The gain is set to trip when the voltage on
R
SENSE
exceeds 125mV and the minus comparator input
is set to 1.25V. The peak detector has a discharge resistor
of 1M plus the op amp input bias current.
相关PDF资料
PDF描述
LTC1535CSW Isolated RS485 Transceiver
LTC1535 Isolated RS485 Transceiver
LTC1540IS8 Nanopower Comparator with Reference
LTC1540 Nanopower Comparator with Reference
LTC1540C Nanopower Comparator with Reference
相关代理商/技术参数
参数描述
LTC1531CSW 功能描述:IC COMP ISOLATED SLF-PWRD 28SOIC RoHS:否 类别:集成电路 (IC) >> 线性 - 比较器 系列:- 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:2,500 系列:- 类型:通用 元件数:1 输出类型:CMOS,推挽式,满摆幅,TTL 电压 - 电源,单路/双路(±):2.5 V ~ 5.5 V,±1.25 V ~ 2.75 V 电压 - 输入偏移(最小值):5mV @ 5.5V 电流 - 输入偏压(最小值):1pA @ 5.5V 电流 - 输出(标准):- 电流 - 静态(最大值):24µA CMRR, PSRR(标准):80dB CMRR,80dB PSRR 传输延迟(最大):450ns 磁滞:±3mV 工作温度:-40°C ~ 85°C 封装/外壳:6-WFBGA,CSPBGA 安装类型:表面贴装 包装:管件 其它名称:Q3554586
LTC1531CSW#PBF 功能描述:IC COMP ISOLATED SLF-PWRD 28SOIC RoHS:是 类别:集成电路 (IC) >> 线性 - 比较器 系列:- 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:2,500 系列:- 类型:通用 元件数:1 输出类型:CMOS,推挽式,满摆幅,TTL 电压 - 电源,单路/双路(±):2.5 V ~ 5.5 V,±1.25 V ~ 2.75 V 电压 - 输入偏移(最小值):5mV @ 5.5V 电流 - 输入偏压(最小值):1pA @ 5.5V 电流 - 输出(标准):- 电流 - 静态(最大值):24µA CMRR, PSRR(标准):80dB CMRR,80dB PSRR 传输延迟(最大):450ns 磁滞:±3mV 工作温度:-40°C ~ 85°C 封装/外壳:6-WFBGA,CSPBGA 安装类型:表面贴装 包装:管件 其它名称:Q3554586
LTC1531CSW#TR 功能描述:IC COMP DIFF DUAL SELFPWR 28SOIC RoHS:否 类别:集成电路 (IC) >> 线性 - 比较器 系列:- 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:2,500 系列:- 类型:通用 元件数:1 输出类型:CMOS,推挽式,满摆幅,TTL 电压 - 电源,单路/双路(±):2.5 V ~ 5.5 V,±1.25 V ~ 2.75 V 电压 - 输入偏移(最小值):5mV @ 5.5V 电流 - 输入偏压(最小值):1pA @ 5.5V 电流 - 输出(标准):- 电流 - 静态(最大值):24µA CMRR, PSRR(标准):80dB CMRR,80dB PSRR 传输延迟(最大):450ns 磁滞:±3mV 工作温度:-40°C ~ 85°C 封装/外壳:6-WFBGA,CSPBGA 安装类型:表面贴装 包装:管件 其它名称:Q3554586
LTC1531CSW#TRPBF 功能描述:IC COMP ISOLATED SLF-PWRD 28SOIC RoHS:是 类别:集成电路 (IC) >> 线性 - 比较器 系列:- 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:2,500 系列:- 类型:通用 元件数:1 输出类型:CMOS,推挽式,满摆幅,TTL 电压 - 电源,单路/双路(±):2.5 V ~ 5.5 V,±1.25 V ~ 2.75 V 电压 - 输入偏移(最小值):5mV @ 5.5V 电流 - 输入偏压(最小值):1pA @ 5.5V 电流 - 输出(标准):- 电流 - 静态(最大值):24µA CMRR, PSRR(标准):80dB CMRR,80dB PSRR 传输延迟(最大):450ns 磁滞:±3mV 工作温度:-40°C ~ 85°C 封装/外壳:6-WFBGA,CSPBGA 安装类型:表面贴装 包装:管件 其它名称:Q3554586
LTC1531IS8 制造商:Linear Technology 功能描述:Self-Powered Isolated Comparator