参数资料
型号: LTC2287CUP#PBF
厂商: Linear Technology
文件页数: 9/28页
文件大小: 0K
描述: IC ADC DUAL 10BIT 40MSPS 64QFN
标准包装: 40
位数: 10
采样率(每秒): 40M
数据接口: 并联
转换器数目: 2
功率耗散(最大): 285mW
电压电源: 单电源
工作温度: 0°C ~ 70°C
安装类型: 表面贴装
封装/外壳: 64-WFQFN 裸露焊盘
供应商设备封装: 64-QFN(9x9)
包装: 管件
输入数目和类型: 2 个单端,双极; 2 个差分, 双极
LTC2288/LTC2287/LTC2286
17
228876fa
25
25
25
25
0.1
F
AIN
+
AIN
12pF
2.2
F
VCM
LTC2288
LTC2287
LTC2286
ANALOG
INPUT
0.1
FT1
1:1
T1 = MA/COM ETC1-1T
RESISTORS, CAPACITORS
ARE 0402 PACKAGE SIZE
228876 F03
capacitors to acquire a new sample. Since the sampling
capacitors still hold the previous sample, a charging glitch
proportional to the change in voltage between samples will
be seen at this time. If the change between the last sample
and the new sample is small, the charging glitch seen at
the input will be small. If the input change is large, such as
the change seen with input frequencies near Nyquist, then
a larger charging glitch will be seen.
Single-Ended Input
For cost sensitive applications, the analog inputs can be
driven single-ended. With a single-ended input the har-
monic distortion and INL will degrade, but the SNR and
DNL will remain unchanged. For a single-ended input, AIN+
should be driven with the input signal and AIN– should be
connected to 1.5V or VCM.
Common Mode Bias
For optimal performance the analog inputs should be
driven differentially. Each input should swing
±0.5V for
the 2V range or
±0.25V for the 1V range, around a
common mode voltage of 1.5V. The VCM output pin may
be used to provide the common mode bias level. VCM can
be tied directly to the center tap of a transformer to set the
DC input level or as a reference level to an op amp
differential driver circuit. The VCM pin must be bypassed to
ground close to the ADC with a 2.2
F or greater capacitor.
Input Drive Impedance
As with all high performance, high speed ADCs, the
dynamic performance of the LTC2288/LTC2287/LTC2286
can be influenced by the input drive circuitry, particularly
the second and third harmonics. Source impedance and
reactance can influence SFDR. At the falling edge of CLK,
the sample-and-hold circuit will connect the 4pF sampling
capacitor to the input pin and start the sampling period.
The sampling period ends when CLK rises, holding the
sampled input on the sampling capacitor. Ideally the input
circuitry should be fast enough to fully charge
the sampling capacitor during the sampling period
1/(2FENCODE); however, this is not always possible and the
incomplete settling may degrade the SFDR. The sampling
APPLICATIO S I FOR ATIO
WU
UU
glitch has been designed to be as linear as possible to
minimize the effects of incomplete settling.
For the best performance, it is recommended to have a
source impedance of 100
or less for each input. The
source impedance should be matched for the differential
inputs. Poor matching will result in higher even order
harmonics, especially the second.
Input Drive Circuits
Figure 3 shows the LTC2288/LTC2287/LTC2286 being
driven by an RF transformer with a center tapped second-
ary. The secondary center tap is DC biased with VCM,
setting the ADC input signal at its optimum DC level.
Terminating on the transformer secondary is desirable, as
this provides a common mode path for charging glitches
caused by the sample and hold. Figure 3 shows a 1:1 turns
ratio transformer. Other turns ratios can be used if the
source impedance seen by the ADC does not exceed 100
for each ADC input. A disadvantage of using a transformer
is the loss of low frequency response. Most small RF
transformers have poor performance at frequencies be-
low 1MHz.
Figure 3. Single-Ended to Differential Conversion
Using a Transformer
Figure 4 demonstrates the use of a differential amplifier to
convert a single ended input signal into a differential input
signal. The advantage of this method is that it provides low
frequency input response; however, the limited gain band-
width of most op amps will limit the SFDR at high input
frequencies.
相关PDF资料
PDF描述
LTC1417CGN#TRPBF IC A/D CONV 14BIT SAMPLNG 16SSOP
LTC1417CGN#TR IC ADC 14BIT 400KSPS SMPL 16SSOP
MS27467T9F44S CONN PLUG 4POS STRAIGHT W/SCKT
D38999/26KE6BA CONN HSG PLUG 6POS STRGHT SCKT
MS27467E9F6S CONN PLUG 6POS STRAIGHT W/SCKT
相关代理商/技术参数
参数描述
LTC2287IUP 制造商:LINER 制造商全称:Linear Technology 功能描述:Dual 10-Bit, 65/40/25Msps Low Noise 3V ADCs
LTC2287IUP#PBF 功能描述:IC ADC DUAL 10BIT 40MSPS 64QFN RoHS:是 类别:集成电路 (IC) >> 数据采集 - 模数转换器 系列:- 标准包装:1,000 系列:- 位数:12 采样率(每秒):300k 数据接口:并联 转换器数目:1 功率耗散(最大):75mW 电压电源:单电源 工作温度:0°C ~ 70°C 安装类型:表面贴装 封装/外壳:24-SOIC(0.295",7.50mm 宽) 供应商设备封装:24-SOIC 包装:带卷 (TR) 输入数目和类型:1 个单端,单极;1 个单端,双极
LTC2287IUP#TRPBF 功能描述:IC ADC DUAL 10BIT 40MSPS 64QFN RoHS:是 类别:集成电路 (IC) >> 数据采集 - 模数转换器 系列:- 标准包装:1,000 系列:- 位数:12 采样率(每秒):300k 数据接口:并联 转换器数目:1 功率耗散(最大):75mW 电压电源:单电源 工作温度:0°C ~ 70°C 安装类型:表面贴装 封装/外壳:24-SOIC(0.295",7.50mm 宽) 供应商设备封装:24-SOIC 包装:带卷 (TR) 输入数目和类型:1 个单端,单极;1 个单端,双极
LTC2287UP 制造商:LINER 制造商全称:Linear Technology 功能描述:Dual 10-Bit, 65/40/25Msps Low Noise 3V ADCs
LTC2288 制造商:LINER 制造商全称:Linear Technology 功能描述:Dual 10-Bit, 65/40/25Msps Low Noise 3V ADCs