参数资料
型号: LTC3600IDD#PBF
厂商: Linear Technology
文件页数: 15/28页
文件大小: 0K
描述: IC REG BUCK SYNC ADJ 1.5A 12DFN
特色产品: LTC3600 Step-Down Regulator
标准包装: 121
类型: 降压(降压)
输出类型: 可调式
输出数: 1
输出电压: 0 V ~ 14.5 V
输入电压: 4 V ~ 15 V
PWM 型: 电流模式
频率 - 开关: 1MHz
电流 - 输出: 1.5A
同步整流器:
工作温度: -40°C ~ 125°C
安装类型: 表面贴装
封装/外壳: 12-WFDFN 裸露焊盘
包装: 管件
供应商设备封装: 12-DFN(3x3)
LTC3600
APPLICATIONS INFORMATION
Efficiency Considerations
The percent efficiency of a switching regulator is equal to
the output power divided by the input power times 100%.
It is often useful to analyze individual losses to determine
what is limiting the efficiency and which change would
produce the most improvement. Percent efficiency can
be expressed as:
% Efficiency = 100% – (L1 + L2 + L3 + …)
where L1, L2, etc., are the individual losses as a percent-
age of input power.
Although all dissipative elements in the circuit produce
losses, four main sources usually account for most of
the losses in LTC3600 circuits: 1) I 2 R losses, 2) transition
losses, 3) switching losses, 4) other losses.
1. I 2 R losses are calculated from the DC resistances of
the internal switches, R SW , the external inductor, R L ,
and board trace resistance, R b . In continuous mode, the
average output current flows through inductor L but is
“chopped” between the internal top and bottom power
MOSFETs. Thus, the series resistance looking into the
SW pin is a function of both top and bottom MOSFET
R DS(ON) and the duty cycle (D) as follows:
R SW = (R DS(ON)TOP )(D) + (R DS(ON)BOT )(1-D)
The R DS(ON) for both the top and bottom MOSFETs can be
obtained from the Typical Performance Characteristics
curves. Thus, to obtain I 2 R losses:
I 2 R losses = I OUT2 (R SW + R L + R b )
2. Transition loss arises from the brief amount of time
the top power MOSFET spends in the saturated region
during switch node transitions. It depends upon the
input voltage, load current, internal power MOSFET
gate capacitance, internal driver strength, and switch-
ing frequency.
3. The INTV CC current is the sum of the power MOSFET
driver and control currents. The power MOSFET driver
current results from switching the gate capacitance of
the power MOSFETs. Each time a power MOSFET gate
is switched from low to high to low again, a packet of
charge dQ moves from V IN to ground. The resulting
dQ/dt is a current out of INTV CC that is typically much
larger than the DC control bias current. In continuous
mode, I GATECHG = f SW (QT + QB), where QT and QB are
the gate charges of the internal top and bottom power
MOSFETs and f SW is the switching frequency. Since
INTV CC is a low dropout regulator output powered by
V IN , the INTV CC current also shows up as V IN current,
unless a separate voltage supply (>5V and <6V) is used
to drive INTV CC .
4. Other “hidden” losses such as copper trace and internal
load resistances can account for additional efficiency
degradations in the overall power system. It is very
important to include these system level losses in the
design of a system. Other losses including diode conduc-
tion losses during dead-time and inductor core losses
generally account for less than 2% total additional loss.
Thermal Considerations
In a majority of applications, the LTC3600 does not dis-
sipate much heat due to its high efficiency and low thermal
resistance of its exposed pad DFN or MSOP package. How-
ever, in applications where the LTC3600 is running at high
ambient temperature, high V IN , high switching frequency
and maximum output current load, the heat dissipated may
exceed the maximum junction temperature of the part. If
the junction temperature reaches approximately 160°C,
both power switches will be turned off until temperature
is about 15°C cooler.
To avoid the LTC3600 from exceeding the maximum junc-
tion temperature, the user will need to do some thermal
analysis. The goal of the thermal analysis is to determine
whether the power dissipated exceeds the maximum junction
temperature of the part. The temperature rise is given by:
T RISE = P D ? θ JA
3600fc
15
相关PDF资料
PDF描述
LTC3569EFE#PBF IC REG BUCK SYNC ADJ 16TSSOP
HMM15DRTI-S13 CONN EDGECARD 30POS .156 EXTEND
MAX6412UK45+T IC RESET MPU LOW PWR SOT23-5
LGU2Z821MELA CAP ALUM 820UF 180V 20% SNAP
MAX6413UK36+T IC RESET MPU LOW PWR SOT23-5
相关代理商/技术参数
参数描述
LTC3600IMSE#PBF 功能描述:IC REG BUCK SYNC ADJ 1.5A 12MSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 标准包装:2,500 系列:- 类型:降压(降压) 输出类型:固定 输出数:1 输出电压:1.2V,1.5V,1.8V,2.5V 输入电压:2.7 V ~ 20 V PWM 型:- 频率 - 开关:- 电流 - 输出:50mA 同步整流器:是 工作温度:-40°C ~ 125°C 安装类型:表面贴装 封装/外壳:10-TFSOP,10-MSOP(0.118",3.00mm 宽)裸露焊盘 包装:带卷 (TR) 供应商设备封装:10-MSOP 裸露焊盘
LTC3600IMSE#TRPBF 功能描述:IC REG BUCK SYNC ADJ 1.5A 12MSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 标准包装:2,500 系列:- 类型:降压(降压) 输出类型:固定 输出数:1 输出电压:1.2V,1.5V,1.8V,2.5V 输入电压:2.7 V ~ 20 V PWM 型:- 频率 - 开关:- 电流 - 输出:50mA 同步整流器:是 工作温度:-40°C ~ 125°C 安装类型:表面贴装 封装/外壳:10-TFSOP,10-MSOP(0.118",3.00mm 宽)裸露焊盘 包装:带卷 (TR) 供应商设备封装:10-MSOP 裸露焊盘
LTC3601EMSE#PBF 功能描述:IC REG BUCK SYNC ADJ 1.5A 16MSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 标准包装:250 系列:- 类型:降压(降压) 输出类型:固定 输出数:1 输出电压:1.2V 输入电压:2.05 V ~ 6 V PWM 型:电压模式 频率 - 开关:2MHz 电流 - 输出:500mA 同步整流器:是 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:6-UFDFN 包装:带卷 (TR) 供应商设备封装:6-SON(1.45x1) 产品目录页面:1032 (CN2011-ZH PDF) 其它名称:296-25628-2
LTC3601EMSE#TRPBF 功能描述:IC REG BUCK SYNC ADJ 1.5A 16MSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 标准包装:2,500 系列:- 类型:升压(升压) 输出类型:可调式 输出数:1 输出电压:1.24 V ~ 30 V 输入电压:1.5 V ~ 12 V PWM 型:电流模式,混合 频率 - 开关:600kHz 电流 - 输出:500mA 同步整流器:无 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:8-SOIC(0.154",3.90mm 宽) 包装:带卷 (TR) 供应商设备封装:8-SOIC
LTC3601EUD#PBF 功能描述:IC REG BUCK SYNC ADJ 1.5A 16QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 标准包装:250 系列:- 类型:降压(降压) 输出类型:固定 输出数:1 输出电压:1.2V 输入电压:2.05 V ~ 6 V PWM 型:电压模式 频率 - 开关:2MHz 电流 - 输出:500mA 同步整流器:是 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:6-UFDFN 包装:带卷 (TR) 供应商设备封装:6-SON(1.45x1) 产品目录页面:1032 (CN2011-ZH PDF) 其它名称:296-25628-2