参数资料
型号: LTC3735EUHF
厂商: Linear Technology
文件页数: 23/32页
文件大小: 0K
描述: IC CTRLR DC/DC 2PH HI EFF 38-QFN
标准包装: 52
应用: 控制器,Intel 移动式 CPU
输出数: 1
输出电压: 0.7 V ~ 1.71 V
工作温度: -40°C ~ 85°C
安装类型: 表面贴装
封装/外壳: 38-WFQFN 裸露焊盘
供应商设备封装: 38-QFN(5x7)
包装: 管件
LTC3735
APPLICATIONS INFORMATION
+
load current. When a load step occurs, V OUT shifts by an
amount equal to ?I LOAD (ESR), where ESR is the effective
series resistance of C OUT . ?I LOAD also begins to charge or
discharge C OUT generating the feedback error signal that
forces the regulator to adapt to the current change and
return V OUT to its steady-state value. During this recovery
time V OUT can be monitored for excessive overshoot or
ringing, which would indicate a stability problem. The
availability of the I TH pin not only allows optimization of
control loop behavior but also provides a DC coupled and
AC filtered closed loop response test point. The DC step,
rise time, and settling at this test point truly reflects the
closed loop response. Assuming a predominantly second
order system, phase margin and/or damping factor can be
estimated using the percentage of overshoot seen at this
pin. The bandwidth can also be estimated by examining the
rise time at the pin. The I TH external components shown
in the Figure 1 circuit will provide an adequate starting
point for most applications.
The I TH series R C -C C filter sets the dominant pole-zero
loop compensation. The values can be modified slightly
(from 0.2 to 5 times their suggested values) to optimize
transient response once the final PC layout is done and
the particular output capacitor type and value have been
determined. The output capacitors need to be decided
upon first because the various types and values determine
the loop gain and phase. An output current pulse of 20%
to 80% of full-load current having a rise time of <1μs will
produce output voltage and I TH pin waveforms that will
give a sense of the overall loop stability without breaking
the feedback loop. The initial output voltage step result-
ing from the step change in output current may not be
within the bandwidth of the feedback loop, so this signal
cannot be used to determine phase margin. This is why
it is better to look at the I TH pin signal which is in the
feedback loop and is the filtered and compensated control
loop response. The gain of the loop will be increased
by increasing R C and the bandwidth of the loop will be
increased by decreasing C C . If R C is increased by the
same factor that C C is decreased, the zero frequency will
be kept the same, thereby keeping the phase the same in
the most critical frequency range of the feedback loop.
The output voltage settling behavior is related to the
stability of the closed-loop system and will demonstrate
the actual overall supply performance.
Automotive Considerations: Plugging into the
Cigarette Lighter
As battery-powered devices go mobile, there is a natural
interest in plugging into the cigarette lighter in order to
conserve or even recharge battery packs during operation.
But before you connect, be advised: you are plugging into
the supply from hell. The main battery line in an automobile
is the source of a number of nasty potential transients,
including load-dump, reverse-battery and double-battery.
Load-dump is the result of a loose battery cable. When the
cable breaks connection, the field collapse in the alterna-
tor can cause a positive spike as high as 60V which takes
several hundred milliseconds to decay. Reverse-battery is
just what it says, while double-battery is a consequence of
tow truck operators finding that a 24V jump start cranks
cold engines faster than 12V.
The network shown in Figure 10 is the most straightfor-
ward approach to protect a DC/DC converter from the
ravages of an automotive power line. The series diode
prevents current from flowing during reverse-battery,
while the transient suppressor clamps the input voltage
during load-dump. Note that the transient suppressor
should not conduct during double-battery operation, but
must still clamp the input voltage below breakdown of
the converter. Although the LT3735 has a maximum input
voltage of 32V, most applications will be limited to 30V
by the MOSFET BV DSS .
V BAT
12V
PV CC
PV CC
LTC3735
3735 F10
Figure 10. Automotive Application Protection
3735fa
23
相关PDF资料
PDF描述
RMM36DRUS CONN EDGECARD 72POS DIP .156 SLD
LTC3733CUHF-1#TRPBF IC CTRLR BUCK 3PH AMD CPU 38-QFN
HSM22DSAN CONN EDGECARD 44POS R/A .156 SLD
HMM22DSAN CONN EDGECARD 44POS R/A .156 SLD
LTC3733CUHF-1#TR IC CTRLR BUCK 3PH AMD CPU 38-QFN
相关代理商/技术参数
参数描述
LTC3735EUHF#PBF 功能描述:IC CTRLR DC/DC 2PH HI EFF 38-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - 专用型 系列:- 标准包装:2,000 系列:- 应用:控制器,DSP 输入电压:4.5 V ~ 25 V 输出数:2 输出电压:最低可调至 1.2V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:30-TFSOP(0.173",4.40mm 宽) 供应商设备封装:30-TSSOP 包装:带卷 (TR)
LTC3735EUHF#TR 功能描述:IC CTRLR DC/DC 2PH HI EFF 38-QFN RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - 专用型 系列:- 标准包装:43 系列:- 应用:控制器,Intel VR11 输入电压:5 V ~ 12 V 输出数:1 输出电压:0.5 V ~ 1.6 V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:48-VFQFN 裸露焊盘 供应商设备封装:48-QFN(7x7) 包装:管件
LTC3735EUHF#TRPBF 功能描述:IC CTRLR DC/DC 2PH HI EFF 38-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - 专用型 系列:- 标准包装:43 系列:- 应用:控制器,Intel VR11 输入电压:5 V ~ 12 V 输出数:1 输出电压:0.5 V ~ 1.6 V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:48-VFQFN 裸露焊盘 供应商设备封装:48-QFN(7x7) 包装:管件
LTC3736EGN 功能描述:IC REG CTRLR BUCK PWM CM 24-SSOP RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:PolyPhase® 标准包装:2,500 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:500kHz 占空比:96% 电源电压:4 V ~ 36 V 降压:无 升压:是 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:24-WQFN 裸露焊盘 包装:带卷 (TR)
LTC3736EGN#PBF 功能描述:IC REG CTRLR BUCK PWM CM 24-SSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:PolyPhase® 特色产品:LM3753/54 Scalable 2-Phase Synchronous Buck Controllers 标准包装:1 系列:PowerWise® PWM 型:电压模式 输出数:1 频率 - 最大:1MHz 占空比:81% 电源电压:4.5 V ~ 18 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-5°C ~ 125°C 封装/外壳:32-WFQFN 裸露焊盘 包装:Digi-Reel® 产品目录页面:1303 (CN2011-ZH PDF) 其它名称:LM3754SQDKR