参数资料
型号: LTC3854EMSE#TRPBF
厂商: Linear Technology
文件页数: 17/28页
文件大小: 0K
描述: IC REG CTRLR BUCK PWM CM 12-MSOP
标准包装: 2,500
PWM 型: 电流模式
输出数: 1
频率 - 最大: 440kHz
占空比: 98%
电源电压: 4.5 V ~ 38 V
降压:
升压:
回扫:
反相:
倍增器:
除法器:
Cuk:
隔离:
工作温度: -40°C ~ 85°C
封装/外壳: 12-TSSOP (0.118",3.00mm 宽)裸露焊盘
包装: 带卷 (TR)
LTC3854
APPLICATIONS INFORMATION
I 2 R losses. For example, if each R DS(ON) = 10mΩ, DCR
= 10mΩ, R SENSE = 5mΩ then the total resistance is
25mΩ. This results in losses ranging from 2% to 8%
as the output current increases from 3A to 15A for
a 5V output, or a 3% to 12% loss for a 3.3V output.
Efficiency varies as the inverse square of V OUT for the
same external components and output power level. The
combined effects of increasingly lower output voltages
and higher currents required by high performance digital
systems is not doubling but quadrupling the importance
of loss terms in the switching regulator system!
4. Transition losses apply only to the topside MOSFET(s),
and become significant only when operating at high
input voltages (typically 15V or greater). Transition
losses can be estimated from:
Transition Loss = 1.7V IN2 ? I O(MAX) ? C RSS ? f S
Other “hidden” losses such as copper trace and the bat-
tery internal resistance can account for an additional 5%
to 10% efficiency degradation in portable systems. It is
very important to include these “system” level losses
during the design phase. The internal battery and fuse
resistance losses can be minimized by making sure that
C IN has adequate charge storage and very low ESR at the
switching frequency. A 25W supply will typically require a
minimum of 20μF to 40μF of capacitance having a maxi-
mum of 20mΩ to 50mΩ of ESR. Other losses including
Schottky conduction losses during dead time and induc-
tor core losses generally account for less than 2% total
additional loss.
Checking Transient Response
The regulator loop response can be checked by looking at
the load current transient response. Switching regulators
take several cycles to respond to a step in DC (resistive)
load current. When a load step occurs, V OUT shifts by an
amount equal to ? I LOAD ? ESR, where ESR is the effective
series resistance of C OUT . ? I LOAD also begins to charge or
discharge C OUT generating the feedback error signal that
forces the regulator to adapt to the current change and
return V OUT to its steady-state value. During this recovery
time V OUT can be monitored for excessive overshoot or
ringing, which would indicate a stability problem. The
availability of the ITH pin not only allows optimization of
control loop behavior but also provides a DC coupled and
AC filtered closed loop response test point. The DC step,
rise time and settling at this test point truly reflects the
closed loop response. Assuming a predominantly second
order system, phase margin and/or damping factor can be
estimated using the percentage of overshoot seen at this
pin. The bandwidth can also be estimated by examining the
rise time at the pin. The ITH external components shown
in the Typical Application circuit will provide an adequate
starting point for most applications.
The ITH series R C -C C filter sets the dominant pole-zero
loop compensation. The values can be modified slightly
(from 0.5 to 2 times their suggested values) to optimize
transient response once the final PC layout is done and
the particular output capacitor type and value have been
determined. The output capacitors need to be selected
because the various types and values determine the loop
gain and phase. An output current pulse of 20% to 80%
of full-load current having a rise time of 1μs to 10μs will
produce output voltage and ITH pin waveforms that will
give a sense of the overall loop stability without break-
ing the feedback loop. Placing a power MOSFET directly
across the output capacitor and driving the gate with an
appropriate signal generator is a practical way to produce
a realistic load step condition. The initial output voltage
step resulting from the step change in output current may
not be within the bandwidth of the feedback loop, so this
signal cannot be used to determine phase margin. This
is why it is better to look at the ITH pin signal which is
in the feedback loop and is the filtered and compensated
control loop response. The gain of the loop will be in-
creased by increasing R C and the bandwidth of the loop
will be increased by decreasing C C . If R C is increased by
the same factor that C C is decreased, the zero frequency
will be kept the same, thereby keeping the phase shift the
same in the most critical frequency range of the feedback
loop. The output voltage settling behavior is related to the
stability of the closed-loop system and will demonstrate
the actual overall supply performance.
A second, more severe transient is caused by switching
in loads with large (>1μF) supply bypass capacitors. The
discharged bypass capacitors are effectively put in parallel
with C OUT , causing a rapid drop in V OUT . No regulator can
alter its delivery of current quickly enough to prevent this
3854fb
17
相关PDF资料
PDF描述
LTC1772BES6#TRM IC REG CTRLR BUCK PWM CM SOT23-6
MIC38HC45-1YN IC REG CTRLR BST FLYBK ISO 14DIP
MIC38HC43YN IC REG CTRLR BST FLYBK ISO 8-DIP
MIC38HC42-1YN IC REG CTRLR BST FLYBK ISO 14DIP
LTC3854EDDB#TRPBF IC REG CTRLR BUCK PWM CM 12-DFN
相关代理商/技术参数
参数描述
LTC3854IDDB#PBF 制造商:Linear Technology 功能描述:DP-SWREG/Controller, Cut Tape Small Footprint, Low Pin Count Synchronous Step-Do
LTC3854IDDB#TRMPBF 功能描述:IC REG CTRLR BUCK PWM CM 12-DFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:2,500 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:500kHz 占空比:96% 电源电压:4 V ~ 36 V 降压:无 升压:是 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:24-WQFN 裸露焊盘 包装:带卷 (TR)
LTC3854IDDB#TRPBF 功能描述:IC REG CTRLR BUCK PWM CM 12-DFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:2,500 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:500kHz 占空比:96% 电源电压:4 V ~ 36 V 降压:无 升压:是 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:24-WQFN 裸露焊盘 包装:带卷 (TR)
LTC3854IMSE#PBF 功能描述:IC REG CTRLR BUCK PWM CM 12-MSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:2,500 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:500kHz 占空比:96% 电源电压:4 V ~ 36 V 降压:无 升压:是 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:24-WQFN 裸露焊盘 包装:带卷 (TR)
LTC3854IMSE#TRPBF 功能描述:IC REG CTRLR BUCK PWM CM 12-MSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:2,500 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:500kHz 占空比:96% 电源电压:4 V ~ 36 V 降压:无 升压:是 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:24-WQFN 裸露焊盘 包装:带卷 (TR)