参数资料
型号: LTC3890IUH#TRPBF
厂商: LINEAR TECHNOLOGY CORP
元件分类: 稳压器
英文描述: DUAL SWITCHING CONTROLLER, 585 kHz SWITCHING FREQ-MAX, PQCC32
封装: 5 X 5 MM, 0.75 MM HEIGHT, LEAD FREE, PLASTIC, MO-220WHHD, QFN-32
文件页数: 18/38页
文件大小: 381K
代理商: LTC3890IUH#TRPBF
LTC3890
25
3890fa
APPLICATIONS INFORMATION
Efficiency Considerations
The percent efficiency of a switching regulator is equal to
the output power divided by the input power times 100%.
It is often useful to analyze individual losses to determine
what is limiting the efficiency and which change would
produce the most improvement. Percent efficiency can
be expressed as:
%Efficiency = 100% – (L1 + L2 + L3 + ...)
where L1, L2, etc. are the individual losses as a percent-
age of input power.
Although all dissipative elements in the circuit produce
losses, four main sources usually account for most of
the losses in LTC3890 circuits: 1) IC VIN current, 2) IN-
TVCC regulator current, 3) I2R losses, 4) topside MOSFET
transition losses.
1. The VIN current is the DC supply current given in the
Electrical Characteristics table, which excludes MOSFET
driver and control currents. VIN current typically results
in a small (<0.1%) loss.
2. INTVCC current is the sum of the MOSFET driver and
control currents. The MOSFET driver current results
from switching the gate capacitance of the power
MOSFETs. Each time a MOSFET gate is switched from
low to high to low again, a packet of charge, dQ, moves
from INTVCC to ground. The resulting dQ/dt is a current
out of INTVCC that is typically much larger than the
control circuit current. In continuous mode, IGATECHG
= f(QT + QB), where QT and QB are the gate charges of
the topside and bottom side MOSFETs.
Supplying INTVCC from an output-derived source power
through EXTVCC will scale the VIN current required for
the driver and control circuits by a factor of (Duty Cycle)/
(Efficiency). For example, in a 20V to 5V application,
10mA of INTVCC current results in approximately 2.5mA
of VIN current. This reduces the midcurrent loss from
10% or more (if the driver was powered directly from
VIN) to only a few percent.
3. I2R losses are predicted from the DC resistances of the
fuse (if used), MOSFET, inductor, current sense resis-
tor and input and output capacitor ESR. In continuous
mode the average output current flows through L and
RSENSE, but is chopped between the topside MOSFET
and the synchronous MOSFET. If the two MOSFETs have
approximately the same RDS(ON), then the resistance
of one MOSFET can simply be summed with the resis-
tances of L, RSENSE and ESR to obtain I2R losses. For
example, if each RDS(ON) = 30mΩ, RL = 50mΩ, RSENSE
= 10mΩ and RESR = 40mΩ (sum of both input and
output capacitance losses), then the total resistance
is 130mΩ. This results in losses ranging from 3% to
13% as the output current increases from 1A to 5A for
a 5V output, or a 4% to 20% loss for a 3.3V output.
Efficiency varies as the inverse square of VOUT for the
same external components and output power level. The
combined effects of increasingly lower output voltages
and higher currents required by high performance digital
systems is not doubling but quadrupling the importance
of loss terms in the switching regulator system!
4. Transition losses apply only to the topside MOSFET(s),
and become significant only when operating at high
input voltages (typically 15V or greater). Transition
losses can be estimated from:
Transition Loss = (1.7) VIN 2 IO(MAX) CRSS f
Other hidden losses such as copper trace and internal
battery resistances can account for an additional 5%
to 10% efficiency degradation in portable systems. It
is very important to include these system level losses
during the design phase. The internal battery and fuse
resistance losses can be minimized by making sure that
CIN has adequate charge storage and very low ESR at
the switching frequency. A 25W supply will typically
require a minimum of 20μF to 40μF of capacitance
having a maximum of 20mΩ to 50mΩ of ESR. The
LTC3890 2-phase architecture typically halves this input
capacitance requirement over competing solutions.
Other losses including body diode conduction losses
during dead-time and inductor core losses generally
account for less than 2% total additional loss.
相关PDF资料
PDF描述
LTC3890HUH#PBF DUAL SWITCHING CONTROLLER, 585 kHz SWITCHING FREQ-MAX, PQCC32
LTC3890HUH#TRPBF DUAL SWITCHING CONTROLLER, 585 kHz SWITCHING FREQ-MAX, PQCC32
LTC3891HFE#TRPBF SWITCHING CONTROLLER, 900 kHz SWITCHING FREQ-MAX, PDSO20
LTC3891HUDC#TRPBF SWITCHING CONTROLLER, 900 kHz SWITCHING FREQ-MAX, PQCC20
LTC3891MPFE#TRPBF SWITCHING CONTROLLER, 900 kHz SWITCHING FREQ-MAX, PDSO20
相关代理商/技术参数
参数描述
LTC3890MPGN-1#PBF 功能描述:IC REG CTRLR BUCK PWM CM 28-SSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:PolyPhase® 标准包装:4,500 系列:PowerWise® PWM 型:控制器 输出数:1 频率 - 最大:1MHz 占空比:95% 电源电压:2.8 V ~ 5.5 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:6-WDFN 裸露焊盘 包装:带卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名称:LM1771SSDX
LTC3890MPGN-1#TRPBF 功能描述:IC REG CTRLR BUCK PWM CM 28-SSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:PolyPhase® 标准包装:4,500 系列:PowerWise® PWM 型:控制器 输出数:1 频率 - 最大:1MHz 占空比:95% 电源电压:2.8 V ~ 5.5 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:6-WDFN 裸露焊盘 包装:带卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名称:LM1771SSDX
LTC3890MPGN-3#PBF 制造商:Linear Technology 功能描述:IC REG CTRLR BUCK PWM CM 28SSOP 制造商:Linear Technology 功能描述:DC-DC CONTROLLER BUCK 900KHZ 制造商:Linear Technology 功能描述:DC-DC CONTROLLER, BUCK, 900KHZ, SSOP-28 制造商:Linear Technology 功能描述:DC-DC CONTROLLER, BUCK, 900KHZ, SSOP-28; Primary Input Voltage:60V; No. of Outputs:2; No. of Pins:28; Operating Temperature Min:-55C; Operating Temperature Max:150C; Operating Temperature Range:-55C to +150C ;RoHS Compliant: Yes
LTC3890MPGN-3#TRPBF 制造商:Linear Technology 功能描述:IC REG CTRLR BUCK PWM CM 28SSOP
LTC3890MPUH#PBF 功能描述:IC REG CTRLR BUCK PWM CM 32-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:PolyPhase® 标准包装:4,500 系列:PowerWise® PWM 型:控制器 输出数:1 频率 - 最大:1MHz 占空比:95% 电源电压:2.8 V ~ 5.5 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:6-WDFN 裸露焊盘 包装:带卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名称:LM1771SSDX