参数资料
型号: MAX15004AAUE+T
厂商: Maxim Integrated Products
文件页数: 19/27页
文件大小: 0K
描述: IC REG CTRLR PWM CM 16-TSSOP
产品培训模块: Lead (SnPb) Finish for COTS
Obsolescence Mitigation Program
标准包装: 2,500
PWM 型: 电流模式
输出数: 1
频率 - 最大: 1MHz
占空比: 50%
电源电压: 4.5 V ~ 40 V
降压:
升压:
回扫:
反相:
倍增器:
除法器:
Cuk:
隔离:
工作温度: -40°C ~ 125°C
封装/外壳: 16-TSSOP(0.173",4.40mm)裸露焊盘
包装: 带卷 (TR)
MAX15004A/B/MAX15005A/B
4.5V to 40V Input Automotive
Flyback/Boost/SEPIC Power-Supply Controllers
Step 3) Calculate the secondary to primary turns ratio
(N SP ) and the bias winding to primary turns ratio (N BP )
using the following equations:
spike. The MOSFET’s absolute maximum V DS rating
must be higher than the worst-case (maximum input
voltage and output load) drain voltage.
? N P
? ?
N SP =
N S
N P
=
L S
L P
V DSMAX = V INMAX + ?
N S
?
× ( V OUT + V D ) ? + V SPIKE
? ?
and
Lower maximum V DS requirement means a shorter
N BP =
N BIAS
N P
=
11 . 7
V OUT + 0 . 35
channel, lower R DS-ON , lower gate charge, and smaller
package. A lower N P /N S ratio allows a low V DSMAX
specification and keeps the leakage inductance spike
under control. A resistor/diode/capacitor snubber net-
I PRMS =
×
I SRMS =
V × I × t × f
C DS × V DS 2 × f OUTMAX
The forward bias drops of the secondary diode and the
bias rectifier diode are assumed to be 0.35V and 0.7V,
respectively. Refer to the diode manufacturer ’s
datasheet to verify these numbers.
Step 4) The transformer manufacturer needs the RMS
current maximum values in the primary, secondary, and
bias windings to design the wire diameter for the differ-
ent windings. Use only wires with a diameter smaller
than 28AWG to keep skin effect losses under control.
To achieve the required copper cross-section, multiple
wires must be used in parallel. Multifilar windings are
common in high-frequency converters. Maximum RMS
currents in the primary and secondary occur at 50%
duty cycle (minimum input voltage) and maximum out-
put power. Use the following equations to calculate the
primary and secondary RMS currents:
P OUT D MAX
0 . 5 × D MAX × η × V INMIN 3
I OUT D OFFMAX
0 . 5 × D OFFMAX 3
The bias current for most MAX15004/MAX15005 applica-
tions is about 20mA and the selection of wire depends
more on convenience than on current capacity.
Step 5) The winding technique and the windings
sequence is important to reduce the leakage induc-
tance spike at switch turn-off. For example, interleave
the secondary between two primary halves. Keep the
bias winding close to the secondary, so that the bias
voltage tracks the output voltage.
MOSFET Selection
MOSFET selection criteria include the maximum drain
voltage, peak/RMS current in the primary and the maxi-
mum-allowable power dissipation of the package with-
out exceeding the junction temperature limits. The
voltage seen by the MOSFET drain is the sum of the
input voltage, the reflected secondary voltage through
transformer turns ratio and the leakage inductance
Maxim Integrated
work can be also used to suppress the leakage induc-
tance spike.
The DC losses in the MOSFET can be calculated using
the value for the primary RMS maximum current.
Switching losses in the MOSFET depend on the operat-
ing frequency, total gate charge, and the transition loss
during turn-off. There are no transition losses during
turn-on since the primary current starts from zero in the
discontinuous conduction mode. MOSFET derating
may be necessary to avoid damage during system
turn-on and any other fault conditions. Use the following
equation to estimate the power dissipation due to the
power MOSFET:
P MOS = ( 1 . 4 × R DSON × I 2 PRMS ) + ( Q g × V IN × f OUTMAX ) +
( I NMAX PK OFF OUTMAX )
4
+
2
where:
Q g = Total gate charge of the MOSFET (C) at 7.4V
V IN = Input voltage (V)
t OFF = Turn-off time (s)
C DS = Drain-to-source capacitance (F)
Output Filter Design
The output capacitance requirements for the flyback
converter depend on the peak-to-peak ripple accept-
able at the load. The output capacitor supports the load
current during the switch on-time. During the off-cycle,
the transformer secondary discharges the core replen-
ishing the lost charge and simultaneously supplies the
load current. The output ripple is the sum of the voltage
drop due to charge loss during the switch on-time and
the ESR of the output capacitor. The high switching fre-
quency of the MAX15004/MAX15005 reduces the
capacitance requirement.
19
相关PDF资料
PDF描述
EBM36DCTI-S288 CONN EDGECARD 72POS .156 EXTEND
MAX15004BAUE+T IC REG CTRLR PWM CM 16-TSSOP
MAX15005AAUE+T IC REG CTRLR PWM CM 16-TSSOP
ISL88011IH544Z-TK IC VOLTAGE MONITOR DUAL SOT23-5
MAX15005BAUE+T IC REG CTRLR PWM CM 16-TSSOP
相关代理商/技术参数
参数描述
MAX15004BAUE/V+ 功能描述:电流型 PWM 控制器 Flyback/Boost/SEPIC Power-Supply Ctlr RoHS:否 制造商:Texas Instruments 开关频率:27 KHz 上升时间: 下降时间: 工作电源电压:6 V to 15 V 工作电源电流:1.5 mA 输出端数量:1 最大工作温度:+ 105 C 安装风格:SMD/SMT 封装 / 箱体:TSSOP-14
MAX15004BAUE/V+T 功能描述:电流型 PWM 控制器 Flyback/Boost/SEPIC Power-Supply Ctlr RoHS:否 制造商:Texas Instruments 开关频率:27 KHz 上升时间: 下降时间: 工作电源电压:6 V to 15 V 工作电源电流:1.5 mA 输出端数量:1 最大工作温度:+ 105 C 安装风格:SMD/SMT 封装 / 箱体:TSSOP-14
MAX15004BAUE+ 功能描述:电流型 PWM 控制器 Flyback/Boost/SEPIC Power-Supply Ctlr RoHS:否 制造商:Texas Instruments 开关频率:27 KHz 上升时间: 下降时间: 工作电源电压:6 V to 15 V 工作电源电流:1.5 mA 输出端数量:1 最大工作温度:+ 105 C 安装风格:SMD/SMT 封装 / 箱体:TSSOP-14
MAX15004BAUE+T 功能描述:电流型 PWM 控制器 Flyback/Boost/SEPIC Power-Supply Ctlr RoHS:否 制造商:Texas Instruments 开关频率:27 KHz 上升时间: 下降时间: 工作电源电压:6 V to 15 V 工作电源电流:1.5 mA 输出端数量:1 最大工作温度:+ 105 C 安装风格:SMD/SMT 封装 / 箱体:TSSOP-14
MAX15005AAUE/V+ 功能描述:电流型 PWM 控制器 Flyback/Boost/SEPIC Power-Supply Ctlr RoHS:否 制造商:Texas Instruments 开关频率:27 KHz 上升时间: 下降时间: 工作电源电压:6 V to 15 V 工作电源电流:1.5 mA 输出端数量:1 最大工作温度:+ 105 C 安装风格:SMD/SMT 封装 / 箱体:TSSOP-14