参数资料
型号: MAX15013DASA+T
厂商: Maxim Integrated
文件页数: 12/18页
文件大小: 0K
描述: IC HALF-BRIDGE MOSFET DVR 8-SOIC
产品培训模块: Lead (SnPb) Finish for COTS
Obsolescence Mitigation Program
标准包装: 2,500
配置: 半桥
输入类型: 反相和非反相
延迟时间: 35ns
电流 - 峰: 2A
配置数: 1
输出数: 2
高端电压 - 最大(自引导启动): 175V
电源电压: 8 V ~ 12.6 V
工作温度: -40°C ~ 125°C
安装类型: 表面贴装
封装/外壳: 8-SOIC(0.154",3.90mm Width)裸露焊盘
供应商设备封装: 8-SOICN 裸露焊盘
包装: 带卷 (TR)
175V/2A, High-Speed,
Half-Bridge MOSFET Drivers
P D = ?? C L DD SW ?? + ( I DDO BSTO DD
) × V
× V
× f
+ I
Applications Information
Supply Bypassing and Grounding
Pay extra attention to bypassing and grounding the
MAX15012/MAX15013. Peak supply and output cur-
rents may exceed 4A when both drivers are driving
large external capacitive loads in-phase. Supply drops
and ground shifts create forms of negative feedback for
inverters and may degrade the delay and transition
times. Ground shifts due to insufficient device ground-
ing may also disturb other circuits sharing the same AC
ground return path. Any series inductance in the V DD ,
DH, DL, and/or GND paths can cause oscillations due
to the very high di/dt when switching the MAX15012/
MAX15013 with any capacitive load. Place one or more
0.1μF ceramic capacitors in parallel as close to the
device as possible to bypass V DD to GND. Use a
ground plane to minimize ground return resistance and
series inductance. Place the external MOSFET as close
as possible to the MAX15012/MAX15013 to further min-
imize board inductance and AC path resistance.
Power Dissipation
Power dissipation in the MAX15012/MAX15013 is pri-
marily due to power loss in the internal boost diode and
the nMOS and pMOS FETs.
For capacitive loads, the total power dissipation for the
device is:
2
where C L is the combined capacitive load at DH and
DL. V DD is the supply voltage and f SW is the switching
frequency of the converter. P D includes the power dis-
sipated in the internal bootstrap diode. The internal
power dissipation reduces by P DIODE , if an external
bootstrap Schottky diode is used. The power dissipa-
tion in the internal boost diode (when driving a capaci-
tive load) is the charge through the diode per switching
period multiplied by the maximum diode forward volt-
age drop (V f = 1V).
P DIODE ? C DH × ( V DD ? 1 ) × f SW × V f
The total power dissipation when using the internal
boost diode is P D and, when using an external
Schottky diode, is P D - P DIODE . The total power dissi-
pated in the device must be kept below the maximum
of 0.471W for the 8-pin SO package at T A = +70°C
ambient.
Layout Information
The MAX15012/MAX15013 drivers source and sink
large currents to create very fast rise and fall edges at
the gates of the switching MOSFETs. The high di/dt can
cause unacceptable ringing if the trace lengths and
impedances are not well controlled. Use the following
PC board layout guidelines when designing with the
MAX15012/MAX15013:
? It is important that the V DD voltage (with respect to
ground) or BST voltage (with respect to HS) does
not exceed 13.2V. Voltage spikes higher than 13.2V
from V DD to GND or BST to HS can damage the
device. Place one or more low ESL 0.1μF decou-
pling ceramic capacitors from V DD to GND, and
from BST to HS as close as possible to the part. The
ceramic decoupling capacitors should be at least 20
times the gate capacitance being driven.
? There are two AC current loops formed between the
device and the gate of the MOSFET being driven.
The MOSFET looks like a large capacitance from gate
to source when the gate is being pulled low. The
active current loop is from the MOSFET driver output
(DL or DH) to the MOSFET gate, to the MOSFET
source, and to the return terminal of the MOSFET dri-
ver (either GND or HS). When the gate of the MOSFET
is being pulled high, the active current loop is from
the MOSFET driver output, (DL or DH), to the
MOSFET gate, to the MOSFET source, to the return
terminal of the drivers decoupling capacitor, to the
positive terminal of the decoupling capacitor, and to
the supply connection of the MOSFET driver. The
decoupling capacitor is either the flying capacitor
connected between BST and HS or the decoupling
capacitor for V DD . Care must be taken to minimize the
physical length and the impedance of these AC cur-
rent paths.
12
______________________________________________________________________________________
相关PDF资料
PDF描述
346-060-540-802 CARDEDGE 60POS DUAL .125 GREEN
LXD25-0620SW POWER SUPPLY LED 25W 620MA DIM
346-060-540-204 CARDEDGE 60POS DUAL .125 GREEN
MAX15012DASA+T IC HALF-BRIDGE MOSFET DVR 8-SOIC
LXD25-0450SW POWER SUPPLY LED 25W 450MA DIM
相关代理商/技术参数
参数描述
MAX15014AATX+ 功能描述:直流/直流开关转换器 1A 4.5-40V Input Buck Converters RoHS:否 制造商:STMicroelectronics 最大输入电压:4.5 V 开关频率:1.5 MHz 输出电压:4.6 V 输出电流:250 mA 输出端数量:2 最大工作温度:+ 85 C 安装风格:SMD/SMT
MAX15014AATX+T 功能描述:直流/直流开关转换器 1A 4.5-40V Input Buck Converters RoHS:否 制造商:STMicroelectronics 最大输入电压:4.5 V 开关频率:1.5 MHz 输出电压:4.6 V 输出电流:250 mA 输出端数量:2 最大工作温度:+ 85 C 安装风格:SMD/SMT
MAX15014BATX+ 功能描述:直流/直流开关转换器 1A 4.5-40V Input Buck Converters RoHS:否 制造商:STMicroelectronics 最大输入电压:4.5 V 开关频率:1.5 MHz 输出电压:4.6 V 输出电流:250 mA 输出端数量:2 最大工作温度:+ 85 C 安装风格:SMD/SMT
MAX15014BATX+T 功能描述:直流/直流开关转换器 1A 4.5-40V Input Buck Converters RoHS:否 制造商:STMicroelectronics 最大输入电压:4.5 V 开关频率:1.5 MHz 输出电压:4.6 V 输出电流:250 mA 输出端数量:2 最大工作温度:+ 85 C 安装风格:SMD/SMT
MAX15015AATX+ 功能描述:直流/直流开关转换器 1A 4.5-40V Input Buck Converters RoHS:否 制造商:STMicroelectronics 最大输入电压:4.5 V 开关频率:1.5 MHz 输出电压:4.6 V 输出电流:250 mA 输出端数量:2 最大工作温度:+ 85 C 安装风格:SMD/SMT