参数资料
型号: MAX1531ETJ+
厂商: Maxim Integrated Products
文件页数: 27/33页
文件大小: 0K
描述: IC PS CTRLR MULTI-OUTPUT 32TQFN
产品培训模块: Lead (SnPb) Finish for COTS
Obsolescence Mitigation Program
标准包装: 60
应用: 五路电源监控器
电源电压: 4.5 V ~ 28 V
电流 - 电源: 1.7mA
工作温度: -40°C ~ 85°C
安装类型: 表面贴装
封装/外壳: 32-WFQFN 裸露焊盘
供应商设备封装: 32-TQFN-EP(5x5)
包装: 管件
Multiple-Output Power-Supply Controllers for
LCD Monitors
crossover frequency as a function the MOSFET
R DS(ON) and the output capacitance:
5) For most applications using tantalum or polymer
capacitors, the output capacitor’s ESR forms a sec-
f CROSSOVER =
g m × V FB × R 11
2 π × A VCS × V OUT ( SET ) × C OUT × R DS ( ON )
ond zero that occurs either below or close to the
crossover frequency. The zero must be cancelled
with a pole. Verify the frequency of the output capac-
itor’s ESR zero, which is:
Change one or both of these circuit parameters to
obtain the desired crossover. Recalculate ADC and
repeat steps 1 to 3 after making the changes.
f ZERO ( ESR ) =
1
2 π × C OUT × R ESR
4) If f POLE(HIGH) is less than the crossover frequency,
cancel the pole with a feed-forward zero. Determine the
value of C23 (feedback capacitor) using the following:
where R ESR is the ESR of the output capacitor C OUT .
If the output capacitor’s ESR zero does not occur
well after the crossover, add the parallel compensa-
C 23 ≈
1
2 π × f POLE ( HIGH ) × R 1
tion capacitor (C2) to form another pole to cancel the
ESR zero. Calculate the value of C2 using:
C23 also forms a secondary pole with R1 and R2
given by the following:
C 2 ≈
C 10
2 π × f ZERO ( ESR ) × R 11 × C 10 - 1
2 π × ( ) × C 23
f POLE _ SEC =
1
R 1 || R 2
Applications using ceramic capacitors usually have
ESR zeros that occur at least one decade above the
crossover. Since the ESR zero of ceramic capacitors
The frequency of this pole should be above the
crossover frequency for loop stability. The position of
this pole is related to the high-frequency current-
mode pole, which is determined by the inductor cur-
rent ramp signal. The inductor current ramp signal
must satisfy the following condition to ensure the
pole occurs above the crossover frequency:
has little effect on the loop stability, it does not need to
be cancelled.
The following is an example. In the circuit of Figure 1,
the input voltage is 12V, the output voltage is set to
3.3V, the maximum load current is 1.5A, the typical on-
resistance of the high-side MOSFET is 100m Ω , and the
inductor is 10μH. The calculated equivalent load resis-
tance is 1.67 Ω . The DC loop gain is:
m 1 >
( R 1 + R 2 ) × f SW - 2 π × D ' × R 2 × f CROSSOVER
2 π × D ' × R 2 × f CROSSOVER × m C
A DC ≈
1.238V × 1.67 Ω × 2000
3 . 3 V × 100 m Ω × 3 . 5
= 4180
If the frequency of the secondary pole is below the
crossover frequency, the frequency of the secondary
If the chosen crossover frequency is 20kHz (step 1):
pole must be moved higher, or the crossover fre-
quency must be moved lower. There are two ways to
increase the frequency of the secondary pole:
increase the high-side MOSFET R DS(ON ), or reduce
C 10 ≈
100 μ S × 4180
2 π × 20 kHz × 2000
≈ 1 . 7 nF
the step-down inductance, L. As explained before, for
given input and output voltages, the current ramp sig-
nal is proportional to the high-side MOSFET R DS(ON) ,
With a 22μF output capacitor, the output pole of the
step-down regulator is (step 2):
and inversely proportional to the inductance. If the
pole occurs below the crossover frequency, the cur-
rent feedback signal is too small. Increasing R DS(ON)
or reducing the inductance can increase the current
feedback signal. To lower the crossover frequency,
f POLE ( OUT ) =
Calculate R11 using:
1
2 π × 22 μ F × 1 . 67 Ω
= 4 . 3 kHz
use the methods described in step 3. Repeat steps 1
to 4 after making the changes.
R 11 ≈
1
2 π × 4 . 3 kHz × 1 . 7 nF
= 22 k Ω
______________________________________________________________________________________
27
相关PDF资料
PDF描述
H6MMS-2618G DIP CABLE - HDM26S/AE26G/HDM26S
EEC19DREF CONN EDGECARD 38POS .100 EYELET
GCC20DREI-S13 CONN EDGECARD 40POS .100 EXTEND
RCM22DCWD CONN EDGECARD 44POS DIP .156 SLD
HFI-201209-1N5S INDUCTOR 2.0X1.2X0.9MM 1.5NH
相关代理商/技术参数
参数描述
MAX1531ETJ/V+ 功能描述:显示驱动器和控制器 PS Controllers for LCD Monitors RoHS:否 制造商:Panasonic Electronic Components 工作电源电压:2.7 V to 5.5 V 最大工作温度: 安装风格:SMD/SMT 封装 / 箱体:QFN-44 封装:Reel
MAX1531ETJ/V+T 功能描述:显示驱动器和控制器 PS Controllers for LCD Monitors RoHS:否 制造商:Panasonic Electronic Components 工作电源电压:2.7 V to 5.5 V 最大工作温度: 安装风格:SMD/SMT 封装 / 箱体:QFN-44 封装:Reel
MAX1531ETJ+ 功能描述:显示驱动器和控制器 PS Controllers for LCD Monitors RoHS:否 制造商:Panasonic Electronic Components 工作电源电压:2.7 V to 5.5 V 最大工作温度: 安装风格:SMD/SMT 封装 / 箱体:QFN-44 封装:Reel
MAX1531ETJ+T 功能描述:显示驱动器和控制器 PS Controllers for LCD Monitors RoHS:否 制造商:Panasonic Electronic Components 工作电源电压:2.7 V to 5.5 V 最大工作温度: 安装风格:SMD/SMT 封装 / 箱体:QFN-44 封装:Reel
MAX1531ETJ-T 功能描述:显示驱动器和控制器 RoHS:否 制造商:Panasonic Electronic Components 工作电源电压:2.7 V to 5.5 V 最大工作温度: 安装风格:SMD/SMT 封装 / 箱体:QFN-44 封装:Reel