参数资料
型号: MAX1954EUB+
厂商: Maxim Integrated Products
文件页数: 16/22页
文件大小: 0K
描述: IC REG CTRLR BUCK PWM CM 10-UMAX
产品培训模块: Lead (SnPb) Finish for COTS
Obsolescence Mitigation Program
标准包装: 50
PWM 型: 电流模式
输出数: 1
频率 - 最大: 360kHz
占空比: 96%
电源电压: 3 V ~ 5.5 V
降压:
升压:
回扫:
反相:
倍增器:
除法器:
Cuk:
隔离:
工作温度: -40°C ~ 85°C
封装/外壳: 10-TFSOP,10-MSOP(0.118",3.00mm 宽)
包装: 管件
Low-Cost, High-Frequency, Current-Mode PWM
Buck Controller
The chosen inductor’s saturation current rating must
exceed the expected peak inductor current (IPEAK).
Determine IPEAK as:
? LIR ?
? ?
I PEAK = I LOAD ( MAX ) + ? 2 ? × I LOAD ( MAX )
Setting the Current Limit
The MAX1953/MAX1954/MAX1957 use a lossless cur-
rent-sense method for current limiting. The voltage
drops across the MOSFETs created by their on-resis-
tances are used to sense the inductor current.
Calculate the current-limit threshold as follows:
FET. A good general rule is to allow 0.5% additional
resistance for each °C of MOSFET junction temperature
rise. The calculated V VALLEY must be less than V CS .
For the MAX1953, connect ILIM to GND for a short-
circuit current-limit voltage of 105mV, to V IN for 320mV
or leave ILIM floating for 210mV.
MOSFET Selection
The MAX1953/MAX1954/MAX1957 drive two external,
logic-level, N-channel MOSFETs as the circuit switch
elements. The key selection parameters are:
? On-Resistance (R DS(ON) ): The lower, the better.
? Maximum Drain-to-Source Voltage (V DSS ): Should
be at least 20% higher than the input supply rail at
V CS =
0.8V
A CS
the high side MOSFET’s drain.
? Gate Charges (Q g , Q gd , Q gs ): The lower, the better.
P N 2 CC = ( 1 ? OUT ) × I 2 LOAD × R DS ( ON )
V VALLEY = R DS ( ON ) × ( I LOAD ( MAX ) ? ? ? × I LOAD ( MAX ) )
where A CS is the gain of the current-sense amplifier.
A CS is 6.3 for the MAX1953 when ILIM is connected to
GND and 3.5 for the MAX1954/MAX1957, and for the
MAX1953 when ILIM is connected to IN or floating. The
0.8V is the usable dynamic range of COMP (V COMP ).
Initially, the high-side MOSFET is monitored. Once the
voltage drop across the high-side MOSFET exceeds V CS ,
the high-side MOSFET is turned off and the low-side
MOSFET is turned on. The voltage across the low-side
MOSFET is then monitored. If the voltage across the low-
side MOSFET exceeds the short-circuit current limit, a
short-circuit condition is determined and the low-side
MOSFET is held on. Once the monitored voltage falls
below the short-circuit current-limit threshold, the
MAX1953/MAX1954/MAX1957 switch normally. The short-
circuit current-limit threshold is fixed at 210mV for the
MAX1954/ MAX1957 and is selectable for the MAX1953.
When selecting the high-side MOSFET, use the follow-
ing method to verify that the MOSFET’s R DS(ON) is suffi-
ciently low at the operating junction temperature (T J ):
0 . 8 V
R DS ( ON ) N 1 ≤
A CS × I PEAK
The voltage drop across the low-side MOSFET at the
valley point and at I LOAD(MAX) is:
? LIR ?
? 2 ?
where R DS(ON) is the maximum value at the desired
maximum operating junction temperature of the MOS-
For a 3.3V input application, choose a MOSFET with a
rated R DS(ON) at V GS = 2.5V. For a 5V input application,
choose the MOSFETs with rated R DS(ON) at V GS ≤ 4.5V.
For a good compromise between efficiency and cost,
choose the high-side MOSFET (N1) that has conduction
losses equal to switching loss at the nominal input volt-
age and output current. The selected low-side and high-
side MOSFETs (N2 and N1, respectively) must have
R DS(ON) that satisfies the current-limit setting condition
above. For N2, make sure that it does not spuriously turn
on due to dV/dt caused by N1 turning on, as this would
result in shoot-through current degrading the efficiency.
MOSFETs with a lower Q gd /Q gs ratio have higher immu-
nity to dV/dt.
For proper thermal management design, the power dis-
sipation must be calculated at the desired maximum
operating junction temperature, T J(MAX) . N1 and N2
have different loss components due to the circuit oper-
ation. N2 operates as a zero-voltage switch; therefore,
major losses are the channel conduction loss (P N2CC )
and the body diode conduction loss (P N2DC ):
USE R DS ( ON ) AT T J ( MAX )
V
V IN
P N 2 DC = 2 × I LOAD × V F × t DT × f S
where V F is the body diode forward-voltage drop, t dt is
the dead time between N1 and N2 switching transi-
tions, and f S is the switching frequency.
16
______________________________________________________________________________________
相关PDF资料
PDF描述
MAX1956ETI+T IC REG CTRLR BUCK PWM VM 28-TQFN
MAX1961EEP+ IC REG CTRLR BUCK PWM VM 20-QSOP
MAX1964TEEE+ IC POWER CTRLR/SEQUENCER 16QSOP
MAX1967EUB+T IC REG CTRLR BUCK PWM VM 10-UMAX
MAX1969EUI+T IC DRVR POWER 28-TSSOP
相关代理商/技术参数
参数描述
MAX1954EUB+ 功能描述:电流型 PWM 控制器 High-f Current-Mode PWM Buck Controller RoHS:否 制造商:Texas Instruments 开关频率:27 KHz 上升时间: 下降时间: 工作电源电压:6 V to 15 V 工作电源电流:1.5 mA 输出端数量:1 最大工作温度:+ 105 C 安装风格:SMD/SMT 封装 / 箱体:TSSOP-14
MAX1954EUB+T 功能描述:电流型 PWM 控制器 High-f Current-Mode PWM Buck Controller RoHS:否 制造商:Texas Instruments 开关频率:27 KHz 上升时间: 下降时间: 工作电源电压:6 V to 15 V 工作电源电流:1.5 mA 输出端数量:1 最大工作温度:+ 105 C 安装风格:SMD/SMT 封装 / 箱体:TSSOP-14
MAX1954EUB-T 功能描述:电流型 PWM 控制器 RoHS:否 制造商:Texas Instruments 开关频率:27 KHz 上升时间: 下降时间: 工作电源电压:6 V to 15 V 工作电源电流:1.5 mA 输出端数量:1 最大工作温度:+ 105 C 安装风格:SMD/SMT 封装 / 箱体:TSSOP-14
MAX1954EVKIT 功能描述:电流型 PWM 控制器 Low-Cost High-Frequency Current-Mode PWM Buck Controller RoHS:否 制造商:Texas Instruments 开关频率:27 KHz 上升时间: 下降时间: 工作电源电压:6 V to 15 V 工作电源电流:1.5 mA 输出端数量:1 最大工作温度:+ 105 C 安装风格:SMD/SMT 封装 / 箱体:TSSOP-14
MAX1955ETI 功能描述:DC/DC 开关控制器 RoHS:否 制造商:Texas Instruments 输入电压:6 V to 100 V 开关频率: 输出电压:1.215 V to 80 V 输出电流:3.5 A 输出端数量:1 最大工作温度:+ 125 C 安装风格: 封装 / 箱体:CPAK