参数资料
型号: MAX541CEPA+
厂商: Maxim Integrated Products
文件页数: 2/12页
文件大小: 0K
描述: IC DAC 16BIT SER/VOLT I/O 8-DIP
产品培训模块: Lead (SnPb) Finish for COTS
Obsolescence Mitigation Program
标准包装: 50
设置时间: 1µs
位数: 16
数据接口: MICROWIRE?,QSPI?,串行,SPI?
转换器数目: 1
电压电源: 单电源
工作温度: -40°C ~ 85°C
安装类型: 通孔
封装/外壳: 8-DIP(0.300",7.62mm)
供应商设备封装: 8-PDIP
包装: 管件
输出数目和类型: 1 电压,单极
采样率(每秒): *
MAX541/MAX542
+5V, Serial-Input, Voltage-Output, 16-Bit DACs
10
______________________________________________________________________________________
To contribute less than 1/2LSB of gain error, the input
resistance typically must be greater than:
The settling time is affected by the buffer input capaci-
tance, the DAC’s output capacitance, and PC board
capacitance. The typical DAC output voltage settling
time is 1s for a full-scale step. Settling time can be
significantly less for smaller step changes. Assuming a
single time-constant exponential settling response, a
full-scale step takes 12 time constants to settle to within
1/2LSB of the final output voltage. The time constant is
equal to the DAC output resistance multiplied by the
total output capacitance. The DAC output capacitance
is typically 10pF. Any additional output capacitance will
increase the settling time.
The external buffer amplifier’s gain-bandwidth product
is important because it increases the settling time by
adding another time constant to the output response.
The effective time constant of two cascaded systems,
each with a single time-constant response, is approxi-
mately the root square sum of the two time constants.
The DAC output’s time constant is 1s / 12 = 83ns,
ignoring the effect of additional capacitance. If the time
constant of an external amplifier with 1MHz bandwidth
is 1 / 2
π (1MHz) = 159ns, then the effective time con-
stant of the combined system is:
This suggests that the settling time to within 1/2LSB of
the final output voltage, including the external buffer
amplifier, will be approximately 12 180ns = 2.15s.
Digital Inputs and Interface Logic
The digital interface for the 16-bit DAC is based on a
3-wire standard that is compatible with SPI, QSPI, and
MICROWIRE interfaces. The three digital inputs (CS,
DIN, and SCLK) load the digital input data serially into
the DAC. LDAC (MAX542) updates the DAC output
asynchronously.
All of the digital inputs include Schmitt-trigger buffers to
accept slow-transition interfaces. This means that opto-
couplers can interface directly to the MAX541/MAX542
without additional external logic. The digital inputs are
compatible with TTL/CMOS-logic levels.
Unipolar Configuration
Figure 2a shows the MAX541/MAX542 configured for
unipolar operation with an external op amp. The op amp
is set for unity gain, and Table 1 lists the codes for this
circuit.
Bipolar Configuration
Figure 2b shows the MAX542 configured for bipolar
operation with an external op amp. The op amp is set
for unity gain with an offset of -1/2VREF. Table 2 lists the
offset binary codes for this circuit.
Power-Supply Bypassing and
Ground Management
For optimum system performance, use PC boards with
separate analog and digital ground planes. Wire-wrap
boards are not recommended. Connect the two ground
planes together at the low-impedance power-supply
source. Connect DGND and AGND together at the IC.
The best ground connection can be achieved by con-
necting the DAC’s DGND and AGND pins together and
connecting that point to the system analog ground
plane. If the DAC’s DGND is connected to the system
digital ground, digital noise may get through to the
DAC’s analog portion.
Bypass VDD with a 0.1F ceramic capacitor connected
between VDD and AGND. Mount it with short leads
close to the device. Ferrite beads can also be used to
further isolate the analog and digital power supplies.
83ns
159ns
180ns
22
() +()
=
6.25k
1
2
1
2
819M
16
÷
=
Table 1. Unipolar Code Table
Table 2. Bipolar Code Table
0V
0000 0000 0000 0000
VREF (1 / 65,536)
0000 0000 0000 0001
VREF (32,768 / 65,536) = 1/2VREF
1000 0000 0000 0000
VREF (65,535 / 65,536)
1111 1111 1111 1111
ANALOG OUTPUT, VOUT
MSB
LSB
DAC LATCH CONTENTS
-VREF (32,768 / 32,768) = -VREF
0000 0000 0000 0000
-VREF (1 / 32,768)
0111 1111 1111 1111
0V
1000 0000 0000 0000
+VREF (1 / 32,768)
1000 0000 0000 0001
+VREF (32,767 / 32,768)
1111 1111 1111 1111
ANALOG OUTPUT, VOUT
MSB
LSB
DAC LATCH CONTENTS
相关PDF资料
PDF描述
MAX542CESD+ IC DAC 16BIT SER VOUT 5V 14-SOIC
MAX542CEPD+ IC DAC 16BIT SER V-OUT 5V 14-DIP
AD835ARZ-REEL7 IC MULTIPLIER 4-QUADRANT 8-SOIC
VI-26X-IV-F2 CONVERTER MOD DC/DC 5.2V 150W
MX7537JEWG+T IC DAC 12BIT DL MULT 24-SOIC
相关代理商/技术参数
参数描述
MAX541CEPA+ 功能描述:数模转换器- DAC 16-Bit Precision DAC RoHS:否 制造商:Texas Instruments 转换器数量:1 DAC 输出端数量:1 转换速率:2 MSPs 分辨率:16 bit 接口类型:QSPI, SPI, Serial (3-Wire, Microwire) 稳定时间:1 us 最大工作温度:+ 85 C 安装风格:SMD/SMT 封装 / 箱体:SOIC-14 封装:Tube
MAX541CESA 功能描述:数模转换器- DAC RoHS:否 制造商:Texas Instruments 转换器数量:1 DAC 输出端数量:1 转换速率:2 MSPs 分辨率:16 bit 接口类型:QSPI, SPI, Serial (3-Wire, Microwire) 稳定时间:1 us 最大工作温度:+ 85 C 安装风格:SMD/SMT 封装 / 箱体:SOIC-14 封装:Tube
MAX541CESA+ 功能描述:数模转换器- DAC 16-Bit Precision DAC RoHS:否 制造商:Texas Instruments 转换器数量:1 DAC 输出端数量:1 转换速率:2 MSPs 分辨率:16 bit 接口类型:QSPI, SPI, Serial (3-Wire, Microwire) 稳定时间:1 us 最大工作温度:+ 85 C 安装风格:SMD/SMT 封装 / 箱体:SOIC-14 封装:Tube
MAX541CESA+T 功能描述:数模转换器- DAC 16-Bit Precision DAC RoHS:否 制造商:Texas Instruments 转换器数量:1 DAC 输出端数量:1 转换速率:2 MSPs 分辨率:16 bit 接口类型:QSPI, SPI, Serial (3-Wire, Microwire) 稳定时间:1 us 最大工作温度:+ 85 C 安装风格:SMD/SMT 封装 / 箱体:SOIC-14 封装:Tube
MAX541CESA-T 功能描述:数模转换器- DAC RoHS:否 制造商:Texas Instruments 转换器数量:1 DAC 输出端数量:1 转换速率:2 MSPs 分辨率:16 bit 接口类型:QSPI, SPI, Serial (3-Wire, Microwire) 稳定时间:1 us 最大工作温度:+ 85 C 安装风格:SMD/SMT 封装 / 箱体:SOIC-14 封装:Tube