参数资料
型号: MAX5876EGK+D
厂商: Maxim Integrated Products
文件页数: 7/19页
文件大小: 0K
描述: IC DAC 12BIT DUAL 250MSPS 68-QFN
产品培训模块: Lead (SnPb) Finish for COTS
Obsolescence Mitigation Program
标准包装: 30
设置时间: 14ns
位数: 12
数据接口: 并联
转换器数目: 2
电压电源: 模拟和数字
功率耗散(最大): 331mW
工作温度: -40°C ~ 85°C
安装类型: 表面贴装
封装/外壳: 68-VFQFN 裸露焊盘
供应商设备封装: 68-QFN 裸露焊盘(10x10)
包装: 管件
输出数目和类型: 4 电流,单极
采样率(每秒): 250M
MAX5876
12-Bit, 250Msps, High-Dynamic-Performance,
Dual DAC with LVDS Inputs
______________________________________________________________________________________
15
Differential-to-Single-Ended Conversion
Using a Wideband RF Transformer
Use a pair of transformers (Figure 7) or a differential
amplifier configuration to convert the differential voltage
existing between OUTIP/OUTQP and OUTIN/OUTQN to
a single-ended voltage. Optimize the dynamic perfor-
mance by using a differential transformer-coupled out-
put and limit the output power to < 0dBm full scale. Pay
close attention to the transformer core saturation char-
acteristics when selecting a transformer for the
MAX5876. Transformer core saturation can introduce
strong 2nd-order harmonic distortion especially at low
output frequencies and high signal amplitudes. For best
results, center tap the transformer to ground. When not
using a transformer, terminate each DAC output to
ground with a 25
resistor. Additionally, place a 50
resistor between the outputs (Figure 8).
For a single-ended unipolar output, select OUTIP
(OUTQP) as the output and ground OUTIN (OUTQN).
Driving the MAX5876 single-ended is not recommended
since additional noise and distortion will be added.
The distortion performance of the DAC depends on the
load impedance. The MAX5876 is optimized for 50
differential double termination. It can be used with a
transformer output as shown in Figure 7 or just one 25
resistor from each output to ground and one 50
resis-
tor between the outputs (Figure 8). This produces a full-
scale output power of up to -2dBm, depending on the
output current setting. Higher termination impedance
can be used at the cost of degraded distortion perfor-
mance and increased output noise voltage.
Grounding, Bypassing, and Power-
Supply Considerations
Grounding and power-supply decoupling can strongly
influence the MAX5876 performance. Unwanted digital
crosstalk couples through the input, reference, power
supply, and ground connections, and affects dynamic
performance. High-speed, high-frequency applications
require closely followed proper grounding and power-
supply decoupling. These techniques reduce EMI and
internal crosstalk that can significantly affect the
MAX5876 dynamic performance.
Use a multilayer PCB with separate ground and power-
supply planes. Run high-speed signals on lines directly
above the ground plane. Keep digital signals as far
away from sensitive analog inputs and outputs, refer-
ence input sense lines, and clock inputs as practical.
Use a controlled-impedance, symmetric, differential
design of clock input and the analog output lines to
minimize 2nd-order harmonic distortion components,
thus optimizing the DAC’s dynamic performance. Keep
digital signal paths short and run lengths matched to
avoid propagation delay and data skew mismatches.
The MAX5876 requires five separate power-supply inputs
for analog (AVDD1.8 and AVDD3.3), digital (DVDD1.8 and
DVDD3.3), and clock (AVCLK) circuitry. All power-supply
pins must be connected to their proper supply. Decouple
each AVDD, DVDD, and AVCLK input pin with a separate
0.1F capacitor as close to the device as possible with
the shortest possible connection to the ground plane
(Figure 9). Minimize the analog and digital load capaci-
tances for optimized operation. Decouple all three power-
supply voltages at the point they enter the PCB with
MAX5876
12
OUTIP/OUTQP
OUTIN/OUTQN
DATA11–DATA0
WIDEBAND RF TRANSFORMER T2 PERFORMS THE
DIFFERENTIAL-TO-SINGLE-ENDED CONVERSION
T1, 1:1
T2, 1:1
GND
50
100
50
VOUT, SINGLE-ENDED
Figure 7. Differential-to-Single-Ended Conversion Using a Wideband RF Transformer
相关PDF资料
PDF描述
MAX5877EGK+D IC DAC 14BIT DUAL 250MSPS 68-QFN
MAX5878EGK+D IC DAC 16BIT DUAL 250MSPS 68-QFN
MAX5884EGM+D IC DAC 14BIT 3.3V 200MSPS 48-QFN
MAX5885EGM+D IC DAC 16BIT 3.3V 200MSPS 48-QFN
MAX5886EGK+D IC DAC 12BIT 3.3V 500MSPS 68-QFN
相关代理商/技术参数
参数描述
MAX5876EGK-TD 功能描述:数模转换器- DAC RoHS:否 制造商:Texas Instruments 转换器数量:1 DAC 输出端数量:1 转换速率:2 MSPs 分辨率:16 bit 接口类型:QSPI, SPI, Serial (3-Wire, Microwire) 稳定时间:1 us 最大工作温度:+ 85 C 安装风格:SMD/SMT 封装 / 箱体:SOIC-14 封装:Tube
MAX5876EVKIT# 功能描述:数模转换器- DAC Evaluation Kit for the MAX5876/MAX5877/MAX5878 RoHS:否 制造商:Texas Instruments 转换器数量:1 DAC 输出端数量:1 转换速率:2 MSPs 分辨率:16 bit 接口类型:QSPI, SPI, Serial (3-Wire, Microwire) 稳定时间:1 us 最大工作温度:+ 85 C 安装风格:SMD/SMT 封装 / 箱体:SOIC-14 封装:Tube
MAX5876EVKIT+ 制造商:Maxim Integrated Products 功能描述:EVKIT FOR MAX8576, 3V TO 28V INPUT, LOW-COST, HYSTERETIC SY - Boxed Product (Development Kits) 制造商:Maxim Integrated Products 功能描述:KIT EVALUATION FOR MAX5876 制造商:Maxim Integrated Products 功能描述:MAX5876 Eval Kit
MAX5877EGK+D 功能描述:数模转换器- DAC 14-Bit 2Ch 250Msps DAC RoHS:否 制造商:Texas Instruments 转换器数量:1 DAC 输出端数量:1 转换速率:2 MSPs 分辨率:16 bit 接口类型:QSPI, SPI, Serial (3-Wire, Microwire) 稳定时间:1 us 最大工作温度:+ 85 C 安装风格:SMD/SMT 封装 / 箱体:SOIC-14 封装:Tube
MAX5877EGK+TD 功能描述:数模转换器- DAC 14-Bit 2Ch 250Msps DAC RoHS:否 制造商:Texas Instruments 转换器数量:1 DAC 输出端数量:1 转换速率:2 MSPs 分辨率:16 bit 接口类型:QSPI, SPI, Serial (3-Wire, Microwire) 稳定时间:1 us 最大工作温度:+ 85 C 安装风格:SMD/SMT 封装 / 箱体:SOIC-14 封装:Tube