参数资料
型号: MC68HC16Z1CAG20
厂商: Freescale Semiconductor
文件页数: 75/500页
文件大小: 0K
描述: IC MPU 16BIT 20MHZ 144-LQFP
标准包装: 60
系列: HC16
核心处理器: CPU16
芯体尺寸: 16-位
速度: 20MHz
连通性: EBI/EMI,SCI,SPI
外围设备: POR,PWM,WDT
输入/输出数: 16
程序存储器类型: ROMless
RAM 容量: 1K x 8
电压 - 电源 (Vcc/Vdd): 2.7 V ~ 5.5 V
数据转换器: A/D 8x10b
振荡器型: 内部
工作温度: -40°C ~ 85°C
封装/外壳: 144-LQFP
包装: 托盘
第1页第2页第3页第4页第5页第6页第7页第8页第9页第10页第11页第12页第13页第14页第15页第16页第17页第18页第19页第20页第21页第22页第23页第24页第25页第26页第27页第28页第29页第30页第31页第32页第33页第34页第35页第36页第37页第38页第39页第40页第41页第42页第43页第44页第45页第46页第47页第48页第49页第50页第51页第52页第53页第54页第55页第56页第57页第58页第59页第60页第61页第62页第63页第64页第65页第66页第67页第68页第69页第70页第71页第72页第73页第74页当前第75页第76页第77页第78页第79页第80页第81页第82页第83页第84页第85页第86页第87页第88页第89页第90页第91页第92页第93页第94页第95页第96页第97页第98页第99页第100页第101页第102页第103页第104页第105页第106页第107页第108页第109页第110页第111页第112页第113页第114页第115页第116页第117页第118页第119页第120页第121页第122页第123页第124页第125页第126页第127页第128页第129页第130页第131页第132页第133页第134页第135页第136页第137页第138页第139页第140页第141页第142页第143页第144页第145页第146页第147页第148页第149页第150页第151页第152页第153页第154页第155页第156页第157页第158页第159页第160页第161页第162页第163页第164页第165页第166页第167页第168页第169页第170页第171页第172页第173页第174页第175页第176页第177页第178页第179页第180页第181页第182页第183页第184页第185页第186页第187页第188页第189页第190页第191页第192页第193页第194页第195页第196页第197页第198页第199页第200页第201页第202页第203页第204页第205页第206页第207页第208页第209页第210页第211页第212页第213页第214页第215页第216页第217页第218页第219页第220页第221页第222页第223页第224页第225页第226页第227页第228页第229页第230页第231页第232页第233页第234页第235页第236页第237页第238页第239页第240页第241页第242页第243页第244页第245页第246页第247页第248页第249页第250页第251页第252页第253页第254页第255页第256页第257页第258页第259页第260页第261页第262页第263页第264页第265页第266页第267页第268页第269页第270页第271页第272页第273页第274页第275页第276页第277页第278页第279页第280页第281页第282页第283页第284页第285页第286页第287页第288页第289页第290页第291页第292页第293页第294页第295页第296页第297页第298页第299页第300页第301页第302页第303页第304页第305页第306页第307页第308页第309页第310页第311页第312页第313页第314页第315页第316页第317页第318页第319页第320页第321页第322页第323页第324页第325页第326页第327页第328页第329页第330页第331页第332页第333页第334页第335页第336页第337页第338页第339页第340页第341页第342页第343页第344页第345页第346页第347页第348页第349页第350页第351页第352页第353页第354页第355页第356页第357页第358页第359页第360页第361页第362页第363页第364页第365页第366页第367页第368页第369页第370页第371页第372页第373页第374页第375页第376页第377页第378页第379页第380页第381页第382页第383页第384页第385页第386页第387页第388页第389页第390页第391页第392页第393页第394页第395页第396页第397页第398页第399页第400页第401页第402页第403页第404页第405页第406页第407页第408页第409页第410页第411页第412页第413页第414页第415页第416页第417页第418页第419页第420页第421页第422页第423页第424页第425页第426页第427页第428页第429页第430页第431页第432页第433页第434页第435页第436页第437页第438页第439页第440页第441页第442页第443页第444页第445页第446页第447页第448页第449页第450页第451页第452页第453页第454页第455页第456页第457页第458页第459页第460页第461页第462页第463页第464页第465页第466页第467页第468页第469页第470页第471页第472页第473页第474页第475页第476页第477页第478页第479页第480页第481页第482页第483页第484页第485页第486页第487页第488页第489页第490页第491页第492页第493页第494页第495页第496页第497页第498页第499页第500页
SYSTEM INTEGRATION MODULE
M68HC16 Z SERIES
5-60
USER’S MANUAL
Although arbitration is intended to deal with simultaneous requests of the same inter-
rupt level, it always takes place, even when a single source is requesting service. This
is important for two reasons: the EBI does not transfer the interrupt acknowledge read
cycle to the external bus unless the SIM wins contention, and failure to contend causes
the interrupt acknowledge bus cycle to be terminated early by a bus error.
When arbitration is complete, the module with both the highest asserted interrupt level
and the highest arbitration priority must terminate the bus cycle. Internal modules
place an interrupt vector number on the data bus and generate appropriate internal cy-
cle termination signals. In the case of an external interrupt request, after the interrupt
acknowledge cycle is transferred to the external bus, the appropriate external device
must respond with a vector number, then generate data size acknowledge (DSACK)
termination signals, or it must assert the autovector (AVEC) request signal. If the de-
vice does not respond in time, the SIM bus monitor, if enabled, asserts the bus error
signal (BERR), and a spurious interrupt exception is taken.
Chip-select logic can also be used to generate internal AVEC or DSACK signals in re-
sponse to interrupt acknowledgment cycles. Refer to 5.9.3 Using Chip-Select Sig-
nals for Interrupt Acknowledge for more information. Chip-select address match
logic functions only after the EBI transfers an interrupt acknowledge cycle to the exter-
nal bus following IARB contention. All interrupts from internal modules have their as-
sociated IACK cycles terminated with an internal DSACK. Thus, user vectors (instead
of autovectors) must always be used for interrupts generated from internal modules. If
an internal module makes an interrupt request of a certain priority, and the appropriate
chip-select registers are programmed to generate AVEC or DSACK signals in re-
sponse to an interrupt acknowledge cycle for that priority level, chip-select logic does
not respond to the interrupt acknowledge cycle, and the internal module supplies a
vector number and generates internal cycle termination signals.
For periodic timer interrupts, the PIRQ[2:0] field in the periodic interrupt control register
(PICR) determines PIT priority level. A PIRQ[2:0] value of %000 means that PIT inter-
rupts are inactive. By hardware convention, when the CPU16 receives simultaneous
interrupt requests of the same level from more than one SIM source (including external
devices), the periodic interrupt timer is given the highest priority, followed by the IRQ
pins.
5.8.4 Interrupt Processing Summary
A summary of the entire interrupt processing sequence follows. When the sequence
begins, a valid interrupt service request has been detected and is pending.
A. The CPU16 finishes higher priority exception processing or reaches an instruc-
tion boundary.
B. Processor state is stacked, then the CCR PK extension field is cleared.
C. The interrupt acknowledge cycle begins:
1. FC[2:0] are driven to %111 (CPU space) encoding.
2. The address bus is driven as follows. ADDR[23:20] = %1111; ADDR[19:16]
= %1111, which indicates that the cycle is an interrupt acknowledge CPU
space cycle; ADDR[15:4] = %111111111111; ADDR[3:1] = the priority of
the interrupt request being acknowledged; and ADDR0 = %1.
F
re
e
sc
a
le
S
e
m
ic
o
n
d
u
c
to
r,
I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
n
c
..
.
相关PDF资料
PDF描述
MCIMX31DVKN5DR2 IC MPU I.MX31 CONSUMR 457TMAP
MCIMX31DVMN5DR2 IC MPU I.MX31 CONSUMR 473MAPBGA
MCIMX31CVKN5DR2 IC MCU I.MX31 400MHZ 457TMAP
VE-JNB-IX-S CONVERTER MOD DC/DC 95V 75W
MCIMX31DVKN5D IC MPU I.MX31 CONSUMR 457TMAP
相关代理商/技术参数
参数描述
MC68HC16Z1CAG20 制造商:Freescale Semiconductor 功能描述:Microcontroller
MC68HC16Z1CAG25 功能描述:16位微控制器 - MCU 16 BIT MCU 1K RAM RoHS:否 制造商:Texas Instruments 核心:RISC 处理器系列:MSP430FR572x 数据总线宽度:16 bit 最大时钟频率:24 MHz 程序存储器大小:8 KB 数据 RAM 大小:1 KB 片上 ADC:Yes 工作电源电压:2 V to 3.6 V 工作温度范围:- 40 C to + 85 C 封装 / 箱体:VQFN-40 安装风格:SMD/SMT
MC68HC16Z1CAG25 制造商:Freescale Semiconductor 功能描述:16-Bit Microcontroller IC
MC68HC16Z1CEH16 功能描述:16位微控制器 - MCU 16 BIT MCU 1K RAM RoHS:否 制造商:Texas Instruments 核心:RISC 处理器系列:MSP430FR572x 数据总线宽度:16 bit 最大时钟频率:24 MHz 程序存储器大小:8 KB 数据 RAM 大小:1 KB 片上 ADC:Yes 工作电源电压:2 V to 3.6 V 工作温度范围:- 40 C to + 85 C 封装 / 箱体:VQFN-40 安装风格:SMD/SMT
MC68HC16Z1CEH16 制造商:Freescale Semiconductor 功能描述:16-Bit Microcontroller IC