参数资料
型号: MIC5236-2.5BMM
厂商: Micrel Inc
文件页数: 10/12页
文件大小: 0K
描述: IC REG LDO 2.5V .15A 8-MSOP
标准包装: 100
稳压器拓扑结构: 正,固定式
输出电压: 2.5V
输入电压: 最高 30V
电压 - 压降(标准): 0.3V @ 150mA
稳压器数量: 1
电流 - 输出: 150mA
工作温度: -40°C ~ 125°C
安装类型: 表面贴装
封装/外壳: 8-TSSOP,8-MSOP(0.118",3.00mm 宽)
供应商设备封装: 8-MSOP
包装: 管件
V ERR
V IN
IN OUT V OUT
200k
C OUT
4.7μF
0
0.25 0.50 0.75 1.00 1.25 1.50
q CA
q JC
MIC5236
1N4148
200k
MIC5236
5V
EN ERR
GND
SHUTDOWN
ENABLE
Figure 4. Remote Enable with Short-Circuit
Current Foldback
Thermal Characteristics
The MIC5236 is a high input voltage device, intended to
provide 150mA of continuous output current in two very small
pro?le packages. The power SOIC-8 and power MSOP-8 al-
low the device to dissipate about 50% more power than their
standard equivalents.
Power SOIC-8 Thermal Characteristics
One of the secrets of the MIC5236’s performance is its power
SO-8 package featuring half the thermal resistance of a
standard SO-8 package. Lower thermal resistance means
more output current or higher input voltage for a given pack-
age size.
Lower thermal resistance is achieved by joining the four
ground leads with the die attach paddle to create a single-
piece electrical and thermal conductor. This concept has
been used by MOSFET manufacturers for years, proving
very reliable and cost effective for the user.
Thermal resistance consists of two main elements, θ JC (junc-
tion-to-case thermal resistance) and θ CA (case-to-ambient
thermal resistance). See Figure 5. θ JC is the resistance from
the die to the leads of the package. θ CA is the resistance
from the leads to the ambient air and it includes θ CS (case-
to-sink thermal resistance) and θ SA (sink-to-ambient thermal
resistance).
SOP-8
q JA
ground plane
heat sink area
AMBIENT
printed circuit board
Figure 5. Thermal Resistance
Using the power SOIC-8 reduces the θ JC dramatically and
allows the user to reduce θ CA . The total thermal resistance,
θ JA (junction-to-ambient thermal resistance) is the limiting
factor in calculating the maximum power dissipation capabil-
ity of the device. Typically, the power SOIC-8 has a θ JC of
20°C/W, this is signi?cantly lower than the standard SOIC-8
Micrel, Inc.
which is typically 75°C/W. θ CA is reduced because pins 5
through 8 can now be soldered directly to a ground plane
which signi?cantly reduces the case-to-sink thermal resistance
and sink to ambient thermal resistance.
Low-dropout linear regulators from Micrel are rated to a
maximum junction temperature of 125°C. It is important not to
exceed this maximum junction temperature during operation
of the device. To prevent this maximum junction temperature
from being exceeded, the appropriate ground plane heat sink
must be used.
900
800
700
600
500
400
300
200
100
0
POWER DISSIPATION (W)
Figure 6. Copper Area vs. Power-SOIC
Power Dissipation (? T JA )
Figure 6 shows copper area versus power dissipation with
each trace corresponding to a different temperature rise
above ambient.
From these curves, the minimum area of copper necessary for
the part to operate safely can be determined. The maximum
allowable temperature rise must be calculated to determine
operation along which curve.
ΔT = T J(max) – T A(max)
T J(max) = 125°C
T A(max) = maximum ambient operating temperature
For example, the maximum ambient temperature is 50°C,
the ΔT is determined as follows:
ΔT = 125°C – 50°C
ΔT = 75°C
Using Figure 6, the minimum amount of required copper can
be determined based on the required power dissipation. Power
dissipation in a linear regulator is calculated as follows:
P D = (V IN – V OUT ) I OUT + V IN · I GND
If we use a 3V output device and a 28V input at moderate
output current of 25mA, then our power dissipation is as
follows:
P D = (28V – 3V) × 25mA + 28V × 250μA
P D = 625mW + 7mW
P D = 632mW
From Figure 6, the minimum amount of copper required to
operate this application at a ΔT of 75°C is 25mm 2 .
Quick Method
Determine the power dissipation requirements for the design
along with the maximum ambient temperature at which the
device will be operated. Refer to Figure 7, which shows safe
operating curves for three different ambient temperatures:
MIC5236
10
July 2005
相关PDF资料
PDF描述
TEA1506AT/N1,518 IC SMPS CONTROLLER 14-SOIC
VE-2V0-CY-F3 CONVERTER MOD DC/DC 5V 50W
RS-2409S/H3 CONV DC/DC 2W 18-36VIN 09VOUT
TAP156M020SCS CAP TANT 15UF 20V 20% RADIAL
LC4384C-5FT256I IC PLD 384MC 192I/O 5NS 256FTBGA
相关代理商/技术参数
参数描述
MIC5236-3.0BM 功能描述:IC REG LDO 3V .15A 8-SOIC RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - 线性 系列:- 标准包装:500 系列:- 稳压器拓扑结构:正,固定式 输出电压:12V 输入电压:14.5 V ~ 35 V 电压 - 压降(标准):- 稳压器数量:1 电流 - 输出:500mA 电流 - 限制(最小):- 工作温度:-40°C ~ 125°C 安装类型:通孔 封装/外壳:TO-205AD,TO-39-3 金属罐 供应商设备封装:TO-39 包装:散装 其它名称:*LM78M12CH*LM78M12CH/NOPBLM78M12CH
MIC5236-3.0BM TR 功能描述:IC REG LDO 3V .15A 8-SOIC RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - 线性 系列:- 标准包装:500 系列:- 稳压器拓扑结构:正,固定式 输出电压:12V 输入电压:14.5 V ~ 35 V 电压 - 压降(标准):- 稳压器数量:1 电流 - 输出:500mA 电流 - 限制(最小):- 工作温度:-40°C ~ 125°C 安装类型:通孔 封装/外壳:TO-205AD,TO-39-3 金属罐 供应商设备封装:TO-39 包装:散装 其它名称:*LM78M12CH*LM78M12CH/NOPBLM78M12CH
MIC5236-3.0BMM 功能描述:IC REG LDO 3V .15A 8-MSOP RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - 线性 系列:- 标准包装:500 系列:- 稳压器拓扑结构:正,固定式 输出电压:12V 输入电压:14.5 V ~ 35 V 电压 - 压降(标准):- 稳压器数量:1 电流 - 输出:500mA 电流 - 限制(最小):- 工作温度:-40°C ~ 125°C 安装类型:通孔 封装/外壳:TO-205AD,TO-39-3 金属罐 供应商设备封装:TO-39 包装:散装 其它名称:*LM78M12CH*LM78M12CH/NOPBLM78M12CH
MIC5236-3.0BMM TR 功能描述:IC REG LDO 3V .15A 8-MSOP RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - 线性 系列:- 标准包装:500 系列:- 稳压器拓扑结构:正,固定式 输出电压:12V 输入电压:14.5 V ~ 35 V 电压 - 压降(标准):- 稳压器数量:1 电流 - 输出:500mA 电流 - 限制(最小):- 工作温度:-40°C ~ 125°C 安装类型:通孔 封装/外壳:TO-205AD,TO-39-3 金属罐 供应商设备封装:TO-39 包装:散装 其它名称:*LM78M12CH*LM78M12CH/NOPBLM78M12CH
MIC5236-3.0YM 功能描述:低压差稳压器 - LDO 150mA, Low Iq LDO(Lead Free) RoHS:否 制造商:Texas Instruments 最大输入电压:36 V 输出电压:1.4 V to 20.5 V 回动电压(最大值):307 mV 输出电流:1 A 负载调节:0.3 % 输出端数量: 输出类型:Fixed 最大工作温度:+ 125 C 安装风格:SMD/SMT 封装 / 箱体:VQFN-20