参数资料
型号: MIC7300BMM TR
厂商: Micrel Inc
文件页数: 11/12页
文件大小: 0K
描述: IC OPAMP R-R I/O 8-MSOP
标准包装: 2,500
系列: MM8™
放大器类型: 通用
电路数: 1
输出类型: 满摆幅
转换速率: 0.5 V/µs
增益带宽积: 370kHz
电流 - 输入偏压: 0.5pA
电压 - 输入偏移: 1000µV
电流 - 电源: 1.5mA
电流 - 输出 / 通道: 115mA
电压 - 电源,单路/双路(±): 2.2 V ~ 10 V,±1.1 V ~ 5 V
工作温度: -40°C ~ 85°C
安装类型: 表面贴装
封装/外壳: 8-TSSOP,8-MSOP(0.118",3.00mm 宽)
供应商设备封装: 8-MSOP
包装: 带卷 (TR)
其它名称: MIC7300BMMTR
MIC7300BMMTR-ND
MIC7300
Micrel
MIC7300
8
June 2005
Application Information
Input Common-Mode Voltage
The MIC7300 tolerates input overdrive by at least 300mV
beyond either rail without producing phase inversion.
If the absolute maximum input voltage is exceeded, the input
current should be limited to
±5mA maximum to prevent
reducing reliability. A 10k
series input resistor, used as a
current limiter, will protect the input structure from voltages as
large as 50V above the supply or below ground. See Figure
1.
VIN
VOUT
10k
RIN
Figure 1. Input Current-Limit Protection
Output Voltage Swing
Sink and source output resistances of the MIC7300 are
equal. Maximum output voltage swing is determined by the
load and the approximate output resistance. The output
resistance is:
R
V
I
OUT
DROP
LOAD
=
V
DROP is the voltage dropped within the amplifier output
stage. V
DROP and ILOAD can be determined from the VO
(output swing) portion of the appropriate Electrical Character-
istics table. I
LOAD is equal to the typical output high voltage
minus V+/2 and divided by R
LOAD. For example, using the
Electrical Characteristics DC (5V) table, the typical output
high voltage using a 2k
load (connected to V+/2) is 4.985V,
which produces an I
LOAD of:
4.985V
2.5V
2k
1.243mA
=
.
Voltage drop in the amplifier output stage is:
V
DROP = 5.0V – 4.985V
V
DROP = 0.015V
Because of output stage symmetry, the corresponding typical
output low voltage (0.015V) also equals V
DROP. Then:
R
0.015V
0.001243A
1
OUT == 2
Power Dissipation
The MIC7300 output drive capability requires considering
power dissipation. If the load impedance is low, it is possible
to damage the device by exceeding the 125
°C junction
temperature rating.
On-chip power consists of two components: supply power
and output stage power. Supply power (P
S) is the product of
the supply voltage (V
S = VV+ – VV–) and supply current (IS).
Output stage power (P
O) is the product of the output stage
voltage drop (V
DROP) and the output (load) current (IOUT).
Total on-chip power dissipation is:
P
D = PS + PO
P
D = VS IS + VDROP IOUT
where:
P
D = total on-chip power
P
S = supply power dissipation
P
O = output power dissipation
V
S = VV+ – VV–
I
S = power supply current
V
DROP = VV+ – VOUT
(sourcing current)
V
DROP = VOUT – VV–
(sinking current)
The above addresses only steady state (dc) conditions. For
non-dc conditions the user must estimate power dissipation
based on rms value of the signal.
The task is one of determining the allowable on-chip power
dissipation for operation at a given ambient temperature and
power supply voltage. From this determination, one may
calculate the maximum allowable power dissipation and,
after subtracting P
S, determine the maximum allowable load
current, which in turn can be used to determine the miniumum
load impedance that may safely be driven. The calculation is
summarized below.
P
TT
D(max)
J(max)
A
JA
=
θ
JA(SOT-23-5) = 260°C/W
θ
JA(MSOP-8) = 85°C/W
Driving Capacitive Loads
Driving a capacitive load introduces phase-lag into the output
signal, and this in turn reduces op-amp system phase margin.
The application that is least forgiving of reduced phase
margin is a unity gain amplifier. The MIC7300 can typically
drive a 2500pF capacitive load connected directly to the
output when configured as a unity-gain amplifier and pow-
ered with a 2.2V supply. At 10V operation the circuit typically
drives 6000pF. Phase margin is typically 40
°.
Using Large-Value Feedback Resistors
A large-value feedback resistor (> 500k
) can reduce the
phase margin of a system. This occurs when the feedback
resistor acts in conjunction with input capacitance to create
phase lag in the feedback signal. Input capacitance is usually
a combination of input circuit components and other parasitic
capacitance, such as amplifier input capacitance and stray
printed circuit board capacitance.
Figure 2 illustrates a method of compensating phase lag
caused by using a large-value feedback resistor. Feedback
capacitor C
FB introduces sufficient phase lead to overcome
相关PDF资料
PDF描述
5-535541-1 CONN RECEPT 3POS .100 VERT GOLD
535541-1 CONN RECEPT 3POS .100 VERT AU
7-188275-6 CONN FMALE-ON-BRD 6POS VERT SMD
MMA25-0111R1 CONN RACK/PANEL 11POS 5A
1SMA28AT3 TVS 400W 28V UNIDIRECT SMA
相关代理商/技术参数
参数描述
MIC7300YM5 制造商:RF Micro Devices Inc 功能描述: 制造商:Micrel Inc 功能描述:
MIC7300YM5 TR 功能描述:运算放大器 - 运放 2.2V, IttyBitty Op-Amp with High Drive Capability - Lead Free RoHS:否 制造商:STMicroelectronics 通道数量:4 共模抑制比(最小值):63 dB 输入补偿电压:1 mV 输入偏流(最大值):10 pA 工作电源电压:2.7 V to 5.5 V 安装风格:SMD/SMT 封装 / 箱体:QFN-16 转换速度:0.89 V/us 关闭:No 输出电流:55 mA 最大工作温度:+ 125 C 封装:Reel
MIC7300YM5TR 制造商:Micrel 功能描述:OP Amp Single GP R-R I/O 10V
MIC7300YM5-TR 功能描述:General Purpose Amplifier 1 Circuit Rail-to-Rail SOT-23-5 制造商:microchip technology 系列:IttyBitty? 包装:剪切带(CT) 零件状态:有效 放大器类型:通用 电路数:1 输出类型:满摆幅 压摆率:0.5 V/μs 增益带宽积:370kHz -3db 带宽:- 电流 - 输入偏置:0.5pA 电压 - 输入失调:1mV 电流 - 电源:1.5mA 电流 - 输出/通道:115mA 电压 - 电源,单/双(±):2.2 V ~ 10 V,±1.1 V ~ 5 V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:SC-74A,SOT-753 供应商器件封装:SOT-23-5 标准包装:1
MIC7300YMM 功能描述:运算放大器 - 运放 2.2V, IttyBitty Op-Amp with High Drive Capability - Lead Free RoHS:否 制造商:STMicroelectronics 通道数量:4 共模抑制比(最小值):63 dB 输入补偿电压:1 mV 输入偏流(最大值):10 pA 工作电源电压:2.7 V to 5.5 V 安装风格:SMD/SMT 封装 / 箱体:QFN-16 转换速度:0.89 V/us 关闭:No 输出电流:55 mA 最大工作温度:+ 125 C 封装:Reel