参数资料
型号: MK1716-01RT
元件分类: 时钟产生/分配
英文描述: 133.33 MHz, OTHER CLOCK GENERATOR, PDSO28
封装: 0.150 INCH, SSOP-28
文件页数: 4/8页
文件大小: 126K
代理商: MK1716-01RT
SERIAL PROGRAMMABLE CLOCK WITH SPREAD SPECTRUM
MDS 1716-01 D
4
Revision 051504
In te gr ated C i rcuit Syste m s 525 Race Street, San Jo se, CA 9 512 6 tel (4 08) 2 97-12 01 www.icst.com
MK1716-01
External Components
Series Termination Resistor
Clock output traces over one inch should use series
termination. To series terminate a 50
trace (a
commonly used trace impedance), place a 33
resistor
in series with the clock line, as close to the clock output
pin as possible. The nominal impedance of the clock
output is 20
.
STROBE Pull-up Resistor
In order for the device to start up in the default state, a
250 kOhm pull-up resistor is required.
Decoupling Capacitors
As with any high-performance mixed-signal IC, the
MK1716-01 must be isolated from system power
supply noise to perform optimally.
Decoupling capacitors of 0.01F must be connected
between each VDD and the PCB ground plane.
Crystal Load Capacitors
The device crystal connections should include pads for
small capacitors from X1 to ground and from X2 to
ground. These capacitors are used to adjust the stray
capacitance of the board to match the nominally
required crystal load capacitance. Because load
capacitance can only be increased in this trimming
process, it is important to keep stray capacitance to a
minimum by using very short PCB traces (and no vias)
been the crystal and device. Crystal capacitors must be
connected from each of the pins X1 and X2 to ground.
The value (in pF) of these crystal caps should equal
(CL -6 pF)*2. In this equation, CL= crystal load
capacitance in pF. Example: For a crystal with a 16 pF
load capacitance, each crystal capacitor would be 20
pF [(16-6) x 2] = 20.
PCB Layout Recommendations
For optimum device performance and lowest output
phase noise, the following guidelines should be
observed.
1) Each 0.01F decoupling capacitor should be
mounted on the component side of the board as close
to the VDD pin as possible. No vias should be used
between decoupling capacitor and VDD pin. The PCB
trace to VDD pin should be kept as short as possible,
as should the PCB trace to the ground via.
2) The external crystal should be mounted just next to
the device with short traces. The X1 and X2 traces
should not be routed next to each other with minimum
spaces, instead they should be separated and away
from other traces.
3) To minimize EMI, the 33
series termination resistor
(if needed) should be placed close to each clock
output.
4) An optimum layout is one with all components on the
same side of the board, minimizing vias through other
signal layers.
MK1716-01 Configuration Capabilities
The architecture of the MK1716-01 allows the user to
easily configure the device to a wide range of output
frequencies, for a given input reference frequency.
The frequency multiplier PLL provides a high degree of
precision. The M/N values (the multiplier/divide values
available to generate the target VCO frequency) can be
set within the range of M = 1 to 2048 and N = 1 to 1024.
The MK1716-01 also provides separate output divide
values, from 2 through 20, to allow the two output clock
banks to support widely differing frequency values from
the same PLL.
Each output frequency can be represented as:
Output Freq. = (Ref. Freq)*(M/N)/Output Divide
Each output clock bank has an separate voltage drive
control pin (VDDIOA and VDDIOB) that sets the output
clock voltage swing.
ICS VersaClock Software
ICS applies years of PLL optimization experience into a
user friendly software that accepts the user’s target
reference clock and output frequencies and generates
the lowest jitter, lowest power configuration, with only a
press of a button. The user does not need to have prior
PLL experience or determine the optimal VCO
frequency to support multiple output frequencies.
VersaClock software quickly evaluates accessible VCO
frequencies with available output divide values and
provides an easy to understand, bar code rating for the
相关PDF资料
PDF描述
MK1716-01RT 133.33 MHz, OTHER CLOCK GENERATOR, PDSO28
MK1726-01STR 32 MHz, OTHER CLOCK GENERATOR, PDSO8
MK1726-01ATR 32 MHz, OTHER CLOCK GENERATOR, PDSO8
MK1726-01S 32 MHz, OTHER CLOCK GENERATOR, PDSO8
MK2014A 25 MHz, OTHER CLOCK GENERATOR, PDSO8
相关代理商/技术参数
参数描述
MK1716-01RTR 功能描述:IC CLK SOURCE SER PROGR 28-QSOP RoHS:否 类别:集成电路 (IC) >> 时钟/计时 - 时钟发生器,PLL,频率合成器 系列:VersaClock™ 标准包装:39 系列:- 类型:* PLL:带旁路 输入:时钟 输出:时钟 电路数:1 比率 - 输入:输出:1:10 差分 - 输入:输出:是/是 频率 - 最大:170MHz 除法器/乘法器:无/无 电源电压:2.375 V ~ 3.465 V 工作温度:0°C ~ 70°C 安装类型:* 封装/外壳:* 供应商设备封装:* 包装:*
MK172 制造商:Velleman Inc 功能描述:Sound Star Kit 制造商:Velleman Inc 功能描述:Sound LED Star Kit
MK1725 制造商:ICS 制造商全称:ICS 功能描述:Quad Output Spread Spectrum Clock Generator
MK1725GILF 功能描述:IC CLK GEN SPRD SPECTRUM 16TSSOP RoHS:是 类别:集成电路 (IC) >> 时钟/计时 - 时钟发生器,PLL,频率合成器 系列:- 标准包装:1,000 系列:- 类型:时钟/频率合成器,扇出分配 PLL:- 输入:- 输出:- 电路数:- 比率 - 输入:输出:- 差分 - 输入:输出:- 频率 - 最大:- 除法器/乘法器:- 电源电压:- 工作温度:- 安装类型:表面贴装 封装/外壳:56-VFQFN 裸露焊盘 供应商设备封装:56-VFQFP-EP(8x8) 包装:带卷 (TR) 其它名称:844S012AKI-01LFT
MK1725GILFTR 功能描述:时钟发生器及支持产品 QUAD OUTPUT SPREAD SPECTRUM CLK GENER. RoHS:否 制造商:Silicon Labs 类型:Clock Generators 最大输入频率:14.318 MHz 最大输出频率:166 MHz 输出端数量:16 占空比 - 最大:55 % 工作电源电压:3.3 V 工作电源电流:1 mA 最大工作温度:+ 85 C 安装风格:SMD/SMT 封装 / 箱体:QFN-56