参数资料
型号: MM912G634CM1AER2
厂商: Freescale Semiconductor
文件页数: 106/349页
文件大小: 0K
描述: IC 48KS12 LIN2XLS/HS ISENSE
标准包装: 2,000
应用: 自动
核心处理器: HCS12
程序存储器类型: 闪存(48 kB)
控制器系列: HCS12
RAM 容量: 2K x 8
接口: LIN
电源电压: 5.5 V ~ 27 V
工作温度: -40°C ~ 125°C
安装类型: 表面贴装
封装/外壳: 48-LQFP
包装: 带卷 (TR)
供应商设备封装: 48-LQFP(7x7)
第1页第2页第3页第4页第5页第6页第7页第8页第9页第10页第11页第12页第13页第14页第15页第16页第17页第18页第19页第20页第21页第22页第23页第24页第25页第26页第27页第28页第29页第30页第31页第32页第33页第34页第35页第36页第37页第38页第39页第40页第41页第42页第43页第44页第45页第46页第47页第48页第49页第50页第51页第52页第53页第54页第55页第56页第57页第58页第59页第60页第61页第62页第63页第64页第65页第66页第67页第68页第69页第70页第71页第72页第73页第74页第75页第76页第77页第78页第79页第80页第81页第82页第83页第84页第85页第86页第87页第88页第89页第90页第91页第92页第93页第94页第95页第96页第97页第98页第99页第100页第101页第102页第103页第104页第105页当前第106页第107页第108页第109页第110页第111页第112页第113页第114页第115页第116页第117页第118页第119页第120页第121页第122页第123页第124页第125页第126页第127页第128页第129页第130页第131页第132页第133页第134页第135页第136页第137页第138页第139页第140页第141页第142页第143页第144页第145页第146页第147页第148页第149页第150页第151页第152页第153页第154页第155页第156页第157页第158页第159页第160页第161页第162页第163页第164页第165页第166页第167页第168页第169页第170页第171页第172页第173页第174页第175页第176页第177页第178页第179页第180页第181页第182页第183页第184页第185页第186页第187页第188页第189页第190页第191页第192页第193页第194页第195页第196页第197页第198页第199页第200页第201页第202页第203页第204页第205页第206页第207页第208页第209页第210页第211页第212页第213页第214页第215页第216页第217页第218页第219页第220页第221页第222页第223页第224页第225页第226页第227页第228页第229页第230页第231页第232页第233页第234页第235页第236页第237页第238页第239页第240页第241页第242页第243页第244页第245页第246页第247页第248页第249页第250页第251页第252页第253页第254页第255页第256页第257页第258页第259页第260页第261页第262页第263页第264页第265页第266页第267页第268页第269页第270页第271页第272页第273页第274页第275页第276页第277页第278页第279页第280页第281页第282页第283页第284页第285页第286页第287页第288页第289页第290页第291页第292页第293页第294页第295页第296页第297页第298页第299页第300页第301页第302页第303页第304页第305页第306页第307页第308页第309页第310页第311页第312页第313页第314页第315页第316页第317页第318页第319页第320页第321页第322页第323页第324页第325页第326页第327页第328页第329页第330页第331页第332页第333页第334页第335页第336页第337页第338页第339页第340页第341页第342页第343页第344页第345页第346页第347页第348页第349页
MM912_634 Advance Information, Rev. 10.0
Freescale Semiconductor
194
Figure 59. Handshake Protocol at the Command Level
Differently from the normal bit transfer (where the host initiates the transmission), the serial interface ACK handshake pulse is
initiated by the target MCU by issuing a negative edge on the BKGD pin. The hardware handshake protocol in Figure 58 specifies
the timing when the BKGD pin is being driven, so the host should follow this timing constraint in order to avoid the risk of an
electrical conflict on the BKGD pin.
NOTE
The only place the BKGD pin can have an electrical conflict is when one side is driving low
and the other side is issuing a speedup pulse (high). Other “highs” are pulled rather than
driven. However, at low rates the time of the speedup pulse can become lengthy and so the
potential conflict time becomes longer as well.
The ACK handshake protocol does not support nested ACK pulses. If a BDM command is not acknowledge by an ACK pulse,
the host needs to abort the pending command first in order to be able to issue a new BDM command. When the CPU enters stop
while the host issues a hardware command (e.g., WRITE_BYTE), the target discards the incoming command due to the stop
being detected. Therefore, the command is not acknowledged by the target, which means that the ACK pulse will not be issued
in this case. After a certain time the host (not aware of stop) should decide to abort any possible pending ACK pulse in order to
be sure a new command can be issued. Therefore, the protocol provides a mechanism in which a command, and its
corresponding ACK, can be aborted.
NOTE
The ACK pulse does not provide a timeout. This means for the GO_UNTIL(182) command
that it can not be distinguished if a stop has been executed (command discarded and ACK
not issued) or if the “UNTIL” condition (BDM active) is just not reached yet. Hence in any
case where the ACK pulse of a command is not issued the possible pending command
should be aborted before issuing a new command. See the handshake abort procedure
5.31.4.8
Hardware Handshake Abort Procedure
The abort procedure is based on the SYNC command. In order to abort a command, which had not issued the corresponding
ACK pulse, the host controller should generate a low pulse in the BKGD pin by driving it low for at least 128 serial clock cycles
and then driving it high for one serial clock cycle, providing a speedup pulse.By detecting this long low pulse in the BKGD pin,
the target executes the SYNC protocol, see Section 5.31.4.9, “SYNC — Request Timed Reference Pulse", and assumes that the
pending command and therefore the related ACK pulse, are being aborted. Therefore, after the SYNC protocol has been
completed the host is free to issue new BDM commands. For BDM firmware READ or WRITE commands it can not be
guaranteed that the pending command is aborted when issuing a SYNC before the corresponding ACK pulse. There is a short
latency time from the time the READ or WRITE access begins until it is finished and the corresponding ACK pulse is issued. The
latency time depends on the firmware READ or WRITE command that is issued and on the selected bus clock rate. When the
SYNC command starts during this latency time the READ or WRITE command will not be aborted, but the corresponding ACK
pulse will be aborted. A pending GO, TRACE1 or GO_UNTIL(182) command can not be aborted. Only the corresponding ACK
pulse can be aborted by the SYNC command.
Although it is not recommended, the host could abort a pending BDM command by issuing a low pulse in the BKGD pin shorter
than 128 serial clock cycles, which will not be interpreted as the SYNC command. The ACK is actually aborted when a negative
edge is perceived by the target in the BKGD pin. The short abort pulse should have at least 4 clock cycles keeping the BKGD
READ_BYTE
BDM Issues the
BKGD Pin
Byte Address
BDM Executes the
READ_BYTE Command
Host
Target
Host
Target
BDM Decodes
the Command
ACK Pulse (out of scale)
Host
Target
(2) Bytes are
Retrieved
New BDM
Command
相关PDF资料
PDF描述
345-026-540-802 CARDEDGE 26POS DUAL .100 GREEN
345-026-540-801 CARDEDGE 26POS DUAL .100 GREEN
AYF534465 CONN SOCKET FPC 0.5MM 44POS SMD
345-026-540-204 CARDEDGE 26POS DUAL .100 GREEN
MM912G634CM1AE IC 48KS12 LIN2XLS/HS ISENSE
相关代理商/技术参数
参数描述
MM912G634CV1AE 功能描述:马达/运动/点火控制器和驱动器 48KS12 LIN2xLS/HS Isense RoHS:否 制造商:STMicroelectronics 产品:Stepper Motor Controllers / Drivers 类型:2 Phase Stepper Motor Driver 工作电源电压:8 V to 45 V 电源电流:0.5 mA 工作温度:- 25 C to + 125 C 安装风格:SMD/SMT 封装 / 箱体:HTSSOP-28 封装:Tube
MM912G634CV1AER2 功能描述:马达/运动/点火控制器和驱动器 48KS12 LIN2xLS/HS Isense RoHS:否 制造商:STMicroelectronics 产品:Stepper Motor Controllers / Drivers 类型:2 Phase Stepper Motor Driver 工作电源电压:8 V to 45 V 电源电流:0.5 mA 工作温度:- 25 C to + 125 C 安装风格:SMD/SMT 封装 / 箱体:HTSSOP-28 封装:Tube
MM912G634CV2AP 功能描述:马达/运动/点火控制器和驱动器 48KS12 LIN2xLS/HS Isense RoHS:否 制造商:STMicroelectronics 产品:Stepper Motor Controllers / Drivers 类型:2 Phase Stepper Motor Driver 工作电源电压:8 V to 45 V 电源电流:0.5 mA 工作温度:- 25 C to + 125 C 安装风格:SMD/SMT 封装 / 箱体:HTSSOP-28 封装:Tube
MM912G634CV2APR2 制造商:Freescale Semiconductor 功能描述:Relay Driver 48-Pin LQFP T/R 制造商:Freescale Semiconductor 功能描述:48KS12 LIN2XLS/HS ISENSE - Tape and Reel 制造商:Freescale Semiconductor 功能描述:IC MCU 16BIT 48KB FLASH 48LQFP 制造商:Freescale Semiconductor 功能描述:48KS12 LIN2xLS/HS Isense
MM912G634DM1AE 功能描述:马达/运动/点火控制器和驱动器 48KS12 LIN2xLS/HS Isense RoHS:否 制造商:STMicroelectronics 产品:Stepper Motor Controllers / Drivers 类型:2 Phase Stepper Motor Driver 工作电源电压:8 V to 45 V 电源电流:0.5 mA 工作温度:- 25 C to + 125 C 安装风格:SMD/SMT 封装 / 箱体:HTSSOP-28 封装:Tube